Uncertainty Analysis of Activity Measurement of New Monitoring System for Free-Release for NPP A-1 Decommissioning, Slovakia

Author(s):  
Alojz Slaninka ◽  
Ondrej Sla´vik ◽  
Vladimi´r Necˇas

New free release monitoring post with a large volume 600 L container counting geometry was designed and developed. The monitoring system is able to monitor a material also in standard counting geometry of 200 L drum. Using counting geometry of 600 L rectangular container that is equipped with self-discharger is able to increase the total monitoring capacity. The monitoring system is based on a pair of electrically cooled semiconductor HPGe detectors that are placed into a modifiable vertical or horizontal pair of lead collimators. The monitoring system is integrated with an industrial scale for determination of massic activities of measured materials and in addition by a rotating table in the case of 200 L drums monitoring. Monitoring system is integrated into transportable ISO container with constant environmental conditions that are ensured by air-condition unit. Full-energy peak detection efficiency (FPE) polynomial curves for various densities of measured material were in both cases determined by ISOCS calibration code based on designed counting geometry and delivered ISOCS/LabSOCS detector characterization. Uncertainty analysis of massic activity measurement by container and drum monitoring system in designed counting geometry is introduced below in more detail.

2004 ◽  
Vol 61 (6) ◽  
pp. 1383-1390 ◽  
Author(s):  
Jun Saegusa ◽  
Katsuya Kawasaki ◽  
Akira Mihara ◽  
Mitsuo Ito ◽  
Makoto Yoshida

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Jelena Krneta Nikolić ◽  
Milica Rajačić ◽  
Dragana Todorović ◽  
Marija Janković ◽  
Nataša Sarap ◽  
...  

One of the main problems in quantitative gamma-ray spectroscopy is the determination of detection efficiency, for different energies, source-detector geometries, and composition of samples or sources. There are, in principle, three approaches to this issue: experimental, numerical, and semiempirical. Semiempirical approach is based on the calculation of the efficiency for the measured sample on the basis of an experimental efficiency measured on the same detector, but with a calibration source that can be of different size, geometry, density, or composition—the so-called efficiency transfer. The aim of this paper is to analyze the semiempirical approach, using EFFTRAN and MEFFTRAN software as a typical example. These software were used in the Department of Radiation and Environmental Protection, Vinča Institute of Nuclear Sciences, on three HPGe detectors. The results were compared to the experimentally obtained efficiency, and further validation is performed by measuring reference materials issued within the framework of several interlaboratory intercomparisons. The analysis of the results showed that the efficiency transfer produces good results with the discrepancies within the limits of the measurement uncertainty. Also, for intercomparison measurement, utest criterion for the trueness of the result was applied showing that the majority of the obtained results were acceptable. Some difficulties were identified, and the ways to overcome them were discussed.


2021 ◽  
pp. 61-65
Author(s):  
Biere Ebibuloami ◽  
Ogunremi Ayorinde ◽  
Aina Oluwagbenga ◽  
Emumejaye Kugbere ◽  
Olaoye Adeola ◽  
...  

Qualitative analysis of radionuclides requires the use of reliable gamma-ray detection system. The NaI(Tl) detector has been widely used and still one of the most used detectors today. It is therefore imperative to validate the reliability of the 5x5 cm2 NaI(Tl) gamma spectrometry system used in carrying out gamma-ray analysis of soil samples in the Radiation and Health Laboratory, Federal University of Agriculture Abeokuta, Nigeria. The gamma ray spectrometer is housed in a 5 cm thick cylindrical lead shield. Calibration was executed using standard materials produced under the auspices of the International Atomic Energy Agency (IAEA). Resolution and detection limit (LD) of the detector were determined using full width at half the maximum of the energy peak of 137Cs and background signal level of the reference materials respectively. Counting efficiencies of the detector was calculated using energies of 1460 keV, 1764keV and 2615 keV for 40K, 226Ra and 232Th respectively. Secondary samples, RGMIX1 and RGMIX2 were formulated and counted to calculate activity concentrations using the NaI(Tl) detector. Resolution of the detector was calculated to be 7.8% of 137Cs, which is good for a NaI(Tl) detector. The counting efficiency of the detector is seen to depend on the gamma ray energy. The results from this work shows that the detector system is suitable gamma spectrometry, and will give quality measurements when used for quantitative determination of radionuclides in environmental samples. The efficiency and resolution of the NaI(Tl) detector should also be determined using photon energies obtained from other radioactive sources.


1983 ◽  
Vol 50 (02) ◽  
pp. 563-566 ◽  
Author(s):  
P Hellstern ◽  
K Schilz ◽  
G von Blohn ◽  
E Wenzel

SummaryAn assay for rapid factor XIII activity measurement has been developed based on the determination of the ammonium released during fibrin stabilization. Factor XIII was activated by thrombin and calcium. Ammonium was measured by an ammonium-sensitive electrode. It was demonstrated that the assay procedure yields accurate and precise results and that factor XIII-catalyzed fibrin stabilization can be measured kinetically. The amount of ammonium released during the first 90 min of fibrin stabilization was found to be 7.8 ± 0.5 moles per mole fibrinogen, which is in agreement with the findings of other authors. In 15 normal subjects and in 15 patients suffering from diseases with suspected factor XIII deficiency there was a satisfactory correlation between the results obtained by the “ammonium-release-method”, Bohn’s method, and the immunological assay (r1 = 0.65; r2= 0.70; p<0.01). In 3 of 5 patients with paraproteinemias the values of factor XIII activity determined by the ammonium-release method were markedly lower than those estimated by the other methods. It could be shown that inhibitor mechanisms were responsible for these discrepancies.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1566
Author(s):  
Elena Fabris ◽  
Michela Bulfoni ◽  
Alessandro Nencioni ◽  
Emanuele Nencioni

Introduction: Alpha-galactosidase (α-Gal) is an enzyme responsible for the hydrolyzation of glycolipids and glycoprotein commonly found in dietary sources. More than 20% of the general population suffers from abdominal pain or discomfort caused by intestinal gas and by indigested or partially digested food residuals. Therefore, α-Gal is used in dietary supplements to reduce intestinal gases and help complex food digestion. Marketed enzyme-containing dietary supplements must be produced in accordance with the Food and Drug Administration (FDA) regulations for Current Good Manufacturing Practice (cGMPs). Aim: in this work we illustrated the process used to develop and validate a spectrophotometric enzymatic assay for α-Gal activity quantification in dietary supplements. Methods: The validation workflow included an initial statistical-phase optimization of materials, reagents, and conditions, and subsequently a comparative study with another fluorimetric assay. A final validation of method performance in terms of specificity, linearity, accuracy, intermediate-precision repeatability, and system precision was then executed. Results and conclusions: The proven method achieved good performance in the quantitative determination of α-Gal activity in commercial food supplements in accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals (ICH) guidelines and is suitable as a rapid in-house quality control test.


2020 ◽  
Vol 27 ◽  
pp. 106
Author(s):  
Sotirios Chasapoglou ◽  
A. Tsantiri ◽  
A. Kalamara ◽  
M. Kokkoris ◽  
V. Michalopoulou ◽  
...  

The accurate knowledge of neutron-induced fission cross sections in actinides, is of great importance when it comes to the design of fast nuclear reactors, as well as accelerator driven systems. Specifically for the 232Th(n,f) case, the existing experimental datasets are quite discrepant in both the low and high energy MeV regions, thus leading to poor evaluations, a fact that in turn implies the need for more accurate measurements.In the present work, the total cross section of the 232Th(n,f) reaction has been measured relative to the 235U(n,f) and 238U(n,f) ones, at incident energies of 7.2, 8.4, 9.9 MeV and 14.8, 16.5, 17.8 MeV utilizing the 2H(d,n) and 3H(d,n) reactions respectively, which generally yield quasi-monoenergetic neutron beams. The experiments were performed at the 5.5 MV Tandem accelerator laboratory of N.C.S.R. “Demokritos”, using a Micromegas detector assembly and an ultra thin ThO2 target, especially prepared for fission measurements at n_ToF, CERN during its first phase of operations, using the painting technique. The masses of all actinide samples were determined via α-spectroscopy. The produced fission yields along with the results obtained from activation foils were studied in parallel, using both the NeusDesc [1] and MCNP5 [2] codes, taking into consideration competing nuclear reactions (e.g. deuteron break up), along with neutron elastic and inelastic scattering with the beam line, detector housing and experimental hall materials. Since the 232Th(n,f) reaction has a relatively low energy threshold and can thus be affected by parasitic neutrons originating from a variety of sources, the thorough characterization of the neutron flux impinging on the targets is a prerequisite for accurate cross-section measurements, especially in the absence of time-of-flight capabilities. Additional Monte-Carlo simulations were also performed coupling both GEF [3] and FLUKA [4] codes for the determination of the detection efficiency.


Sign in / Sign up

Export Citation Format

Share Document