Computational Investigation of HCCI Engine Performance With Fuel Reforming Effect on Lean Ethanol

Author(s):  
Alireza Rahbari ◽  
Bamdad Barari ◽  
Ashkan Abbasian Shirazi

In this study, a mechanism containing ethanol reactions is employed and the effects of exhaust gas fuel reforming on operation parameters such as ignition timing, burn duration, temperature, pressure and NOx emission are studied in which a homogeneous mixture is assumed. The results show that hydrogen in the form of reformed gas helps in lowering the intake temperature required for stable HCCI operation. It is concluded that the addition of hydrogen advances the start of combustion in the cylinder. This is a result of the lowering of the minimum intake temperature required for auto-ignition to occur during the compression stroke, resulting in advanced combustion for the same intake temperatures. The obtained results from the model are compared with the experimental data published in the literature and the comparison showed a reasonable compatibility.

Fuel ◽  
2004 ◽  
Vol 83 (13) ◽  
pp. 1837-1845 ◽  
Author(s):  
A Tsolakis ◽  
A Megaritis ◽  
M.L Wyszynski

2006 ◽  
Vol 20 (6) ◽  
pp. 2377-2384 ◽  
Author(s):  
A. Abu-Jrai ◽  
A. Tsolakis ◽  
K. Theinnoi ◽  
R. Cracknell ◽  
A. Megaritis ◽  
...  

2018 ◽  
Vol 2018.26 (0) ◽  
pp. 303
Author(s):  
Shuhei SATO ◽  
Shintaro FUNAMI ◽  
Satoshi SAKAIDA ◽  
Kotaro TANAKA ◽  
Mitsuru KONNO

Author(s):  
Scott Bayliff ◽  
Bret Windom ◽  
Anthony Marchese ◽  
Greg Hampson ◽  
Jeffrey Carlson ◽  
...  

Abstract The goal of this study is to address fundamental limitations to achieving diesel-like efficiencies in heavy duty on-highway natural gas (NG) engines. Engine knock and misfire are barriers to pathways leading to higher efficiency engines. This study explores enabling technologies for development of high efficiency stoichiometric, spark ignited, natural gas engines. These include design strategies for fast and stable combustion and higher dilution tolerance. Additionally, advanced control methodologies are implemented to maintain stable operation between knock and misfire limits. To implement controlled end-gas autoignition (C-EGAI) strategies a Combustion Intensity Metric (CIM) is used for ignition control with the use of a Woodward large engine control module (LECM). Tests were conducted using a single cylinder, variable compression ratio, cooperative fuel research (CFR) engine with baseline conditions of 900 RPM, engine load of 800 kPa indicated mean effective pressure (IMEP), and stoichiometric air/fuel ratio. Exhaust gas recirculation (EGR) tests were performed using a custom EGR system that simulates a high pressure EGR loop and can provide a range of EGR rates from 0 to 40%. The experimental measurements included the variance of EGR rate, compression ratio, engine speed, IMEP, and CIM. These five variables were optimized through a Modified BoxBenken design Surface Response Method (RSM), with brake efficiency as the merit function. A positive linear correlation between CIM and f-EGAI was identified. Consequently, CIM was used as the feedback control parameter for C-EGAI. As such, implementation of C-EGAI effectively allowed for the utilization of high EGR rates and CRs, controlling combustion between a narrower gap between knock and lean limits. The change from fixed to parametric ignition timing with CIM targeted select values of f-EGAI with an average coefficient of variance (COV) of peak pressure of 5.4. The RSM efficiency optimization concluded with operational conditions of 1080 RPM, 1150 kPa IMEP, 10.55:1 compression ratio, and 17.8% EGR rate with a brake efficiency of 21.3%. At this optimized point of peak performance, a f-EGAI for C-EGAI was observed at 34.1% heat release due to auto ignition, a knock onset crank angle value of 10.3° aTDC and ignition timing of −24.7° aTDC. This work has demonstrated that combustion at a fixed f-EGAI can be maintained through advanced ignition control of CIM without experiencing heavy knocking events.


2000 ◽  
Vol 1 (3) ◽  
pp. 269-279 ◽  
Author(s):  
M Nakano ◽  
Y Mandokoro ◽  
S Kubo ◽  
S Yamazaki

Ignition control is an important issue in homogeneous charge compression ignition (HCCI) engines, which have the advantages of low NOx emission and high thermal efficiency. In this study, the effect of the exhaust gas recirculation (EGR) on the ignition control of HCCI engines is discussed using an engine cycle simulation in which a homogeneous mixture is assumed. Auto-ignition of 65 per cent iso-octane + 25 per cent toluene + 10 per cent n-heptane, which is used as a fuel to evaluate the characteristics of a gasoline-like fuel, is represented by a detailed reaction model. The dilution by EGR delays the ignition timing when the charged gas temperature is not changed by EGR. The temperature rise of the charged gas promotes auto-ignition. Based on these characteristics, it was suggested that the ignition timing could be controlled by EGR with temperature control, when the amount of fuel supply is constant. This control method can also be applied to control of the air-fuel ratio (A/F) in the cylinder while maintaining the optimum ignition timing. In spite of the difference in the A/F and the EGR ratios, no significant difference was found in the pressure rise rate at combustion and the NOx emission when the ignition timing was the same.


Fuel ◽  
2021 ◽  
Vol 290 ◽  
pp. 120068
Author(s):  
Yong Huang ◽  
Zunhua Zhang ◽  
Wenwen Wei ◽  
Yanxiang Long ◽  
Gesheng Li

Sign in / Sign up

Export Citation Format

Share Document