Enhanced Condensation Heat-Transfer on Mini or Low Fin Tubes

Author(s):  
Adrian Briggs

This paper presents an overview of the use of low or mini-fin tubes for improving heat-transfer performance in shell-side condensers. The paper concentrates on, but is not limited to, the experimental and theoretical program in progress at Queen Mary, University of London. This work has so far resulted in an extensive data base of experimental data for condensation on single tubes, covering a wide range of tube geometries and fluid thermophysical properties and in the development of a simple to use model which predicts the majority of this data to within 20%. Work is progressing on the effects of vapor shear and on three-dimensional fin profiles; the later having shown the potential for even higher heat-transfer enhancement.

2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Zhen-ping Wan ◽  
Xiao-wu Wang ◽  
Xiao-xia Zhang ◽  
Yong Tang

The third-generation enhanced heat transfer technologies, such as three-dimensional fin and dimple, are still important means of improving energy efficiency. This paper analyzes the condensation heat transfer performances of three edge-shaped finned tubes that were fabricated using the plowing–extruding process. Experimental results show that the shell-side heat transfer coefficient decreases with increases of heat flux and temperature difference between wall and vapor. The edge-shaped finned tubes exhibit better heat transfer performance than smooth tubes. At the identical temperature difference between the wall and the vapor, the shell-side heat transfer coefficient of the edge-shaped finned tubes is approximately 1.7–2.6 times larger than that of the smooth tubes. At the identical temperature difference between the wall and the vapor, the shell-side heat transfer coefficient of edge-shaped finned tubes is also higher than the reported value in the literature. The excellent performance of the edge-shaped finned tubes comes from the coordination of enhancement from the three-dimensional fins, dimples, and grooves. Finned tubes with grooves fabricated along the left direction have higher and thinner fins and therefore show better heat transfer performance. The shell-side heat transfer coefficients of edge-shaped finned tubes increase with plowing–extruding depth and feed increasing.


2021 ◽  
Vol 257 ◽  
pp. 01043
Author(s):  
Peng-Fei Chen ◽  
Kang Chen ◽  
Xiao Wang ◽  
Long Wen

With the application of supercritical fluid heat transfer equipment in industrial fields such as solar thermal power generation, chemical industry, aerospace, etc., studying the heat transfer characteristics of supercritical fluid in micro-fin tubes has become a key theoretical basis for the development of micro-fin low-resistance heat transfer enhancement technology. In view of micro-fin tubes with different fin shapes, this paper took into account thermophysical properties of nitrogen under supercritical conditions and completed a numerical simulation study on the heat transfer process of nitrogen in 2 mm micro-fin tubes under supercritical pressure. The temperature field distribution of supercritical nitrogen in the micro-fin tube was analyzed, and the turbulent flow mechanism of the micro-fin was studied. It was found that micro-fin could increase the heat exchange area, destroy the boundary layer, and improve the heat transfer coefficient. This paper took comprehensive heat transfer performance evaluation factor PEC to compare the influence of different fin shapes on heat transfer enhancement performance of the heat exchange unit. It was found that the comprehensive heat transfer factor of the square straight micro-fin tube was about 1.22 times that of the smooth round tube, and PEC of the triangular straight micro tube was about 1.08 times that of the smooth tube. The results suggest that square straight micro-fin tube has significantly superior heat transfer performance than smooth round tube and triangular straight micro-fin tube.


2017 ◽  
Vol 21 (1 Part A) ◽  
pp. 279-288 ◽  
Author(s):  
Shuxia Qiu ◽  
Peng Xu ◽  
Liping Geng ◽  
Arun Mujumdar ◽  
Zhouting Jiang ◽  
...  

Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Xiao Cheng ◽  
Huiying Wu

Abstract Pillar microchannel heat sinks have been widely used for chip cooling, while their overall heat transfer performance is restricted by the stagnation flow in pillar wake zone. In this work, a simple but effective method using slit microstructure modified on pillar was proposed to enhance wake zone heat transfer. It enables a special flow path for the incoming fluid that intensively disturbs the wake fluid. To validate the proposed method, a three-dimensional simulation was employed to study the laminar flow and heat transfer characteristics in the slit pillar microchannel. The pillar without slit design was also investigated for comparative analysis. Effects of slit angle (θ), height over diameter ratio (H/D), and blocking ratio (D/W) of a single pillar were systematically studied at the Reynolds numbers of 26–260. Results showed the case with θ = 0 deg always demonstrated lower surface temperature, higher Nusselt number and higher thermal performance index (TPI) compared to other cases with different slit angles at the same conditions. Furthermore, it was interesting to find that the slit configuration was not suitable for long pillar microchannel, but preferred for high blocking ratio pillar microchannel at present ranges (H/D ≤ 1, D/W ≤ 0.5). The slit pillar array microchannel was also explored and observed with improved overall heat transfer performance. The proposed slit microstructure well prevents the heat transfer deterioration in pillar wake zone, which is promisingly to be used for cooling performance improvement of electronic device.


2013 ◽  
Vol 284-287 ◽  
pp. 849-853
Author(s):  
Kok Cheong Wong

The present numerical study is conducted in three dimensional to investigate the crossflow of an external round jet and a horizontal stream of microchannel flow. The results of heat transfer performance for the cases with and without transverse jet are compared. The patterns of different crossflow jet were analyzed to understand the flow and heat transfer characteristics. The effect of jet nozzle position on the heat transfer is investigated. Generally, the heat transfer performance increases with the jet Reynolds number. However, some cases of weak jet are found to cause lower heat transfer rate relative to the case without external jet. When vertical weak jet encounter strong horizontal flow, the horizontal flow is dominant that the jet cannot reach the microchannel bottom wall but imposes resistance to the horizontal flow. The investigation on the jet nozzle location shows that the jet nozzle location closer to the channel inlet gives better heat transfer performance.


2004 ◽  
Vol 126 (3) ◽  
pp. 321-328 ◽  
Author(s):  
Jean-Pierre M. Bukasa ◽  
Leon Liebenberg ◽  
Josua P. Meyer

The effect of the spiral angle on the heat transfer performance in micro-fin tube condensers has not yet been clearly established because other geometric parameters affecting the heat transfer performance were simultaneously varied in previous studies. This paper reports on the influence of the spiral angle on the heat transfer during condensation inside spiralled micro-fin tubes having all other geometric parameters constant. Tests were conducted for condensation of R-22, R-134a, and R-407C inside a smooth (9.52 mm outer diameter) and three micro-fin tubes with approximately the same diameter, having spiral angles of 10 deg, 18 deg, and 37 deg, respectively. Experimental results indicated a heat transfer augmentation with spiral angle increase. A new semi-empirical predictive correlation was developed for practical design of spiralled micro-fin tubes. The proposed new correlation predicted the majority of experimental results of the present study within a deviation zone of ±20%.


Author(s):  
Radheesh Dhanasegaran ◽  
Ssheshan Pugazhendhi

In the present study, a flow visualization and heat transfer investigation is carried out computationally on a flat plate with 10×1 array of impinging jets from a corrugated plate. This corrugated structure is an Anti-Cross Flow (ACF) technique which is proved to nullify the negative effects of cross-flow thus enhancing the overall cooling performance. Governing equations are solved using k-ω Shear Stress Transport (SST) turbulence model in commercial code FLUENT. The parameter variation considered for the present study are (i) three different heights of ACF corrugate (C/D = 1, 2 & 3) and (ii) two different jet-to-target plate spacing (H/D = 1 & 2). The dependence of ACF structure performance on the corrugate height (C/D) and the flow structure has been discussed in detail, therefore choosing an optimum corrugate height and visualizing the three-dimensional flow phenomena are the main objectives of the present study. The three-dimensional flow separation and heat transfer characteristics are explained with the help of skin friction lines, upwash fountains, wall eddies, counter-rotating vortex pair (CRVP), and plots of Nusselt number. It is found that the heat transfer performance is high at larger corrugate heights for both the jet-to-plate spacing. Moreover, the deterioration of the skin friction pattern corresponding to the far downstream impingement zones is greatly reduced with ACF structure, retaining more uniform heat transfer pattern even at low H/D values where the crossflow effects are more dominant in case of the conventional cooling structure. In comparison of the overall heat transfer performance the difference between C/D = 3 & C/D = 2 for H/D = 2 is significantly less, thus making the later as the optimal configuration in terms of reduced channel height.


Sign in / Sign up

Export Citation Format

Share Document