Design of a Micromixer With Herringbone Grooves Using Numerical Optimization Techniques

Author(s):  
Mubashshir Ahmad Ansari ◽  
Kwang-Yong Kim

Optimization of a staggered herringbone groove micromixer has been performed by using three-dimensional Navier-Stokes analysis. The analysis of the degree of mixing is performed by the calculation of spatial data statistics. The calculation of the variance of the mass fraction at various nodes on a plane in the channel is used to quantify mixing. A numerical optimization technique is applied to optimize the shape of the grooves on a single wall of the channel. Two design variables, namely, the ratio of the groove depth to channel height and the angle of the groove, are selected for optimization. A mixing index is used as the objective function. The results of the optimization show that the mixing is very sensitive to the shape of the groove which can be used in controlling mixing in microdevices.

Author(s):  
Sang-Yun Lee ◽  
Kwang-Yong Kim

Numerical optimization techniques combined with a three-dimensional thin-layer Navier-Stokes solver are presented. The techniques are used to find an optimum shape of a stator blade in an axial compressor through calculations of single stage rotor-stator flow. The Baldwin-Lomax model is chosen to describe turbulence. For the numerical optimization, search direction is calculated using the steepest decent method and the conjugate direction method. The golden section method is used to determine optimum moving distance along the search direction. The object of the present optimization is to maximize the efficiency. An optimum stacking line is found which produces a custom-tailored three-dimensional blade design.


2004 ◽  
Vol 126 (5) ◽  
pp. 735-742 ◽  
Author(s):  
Kwang-Yong Kim ◽  
Seoung-Jin Seo

In this paper, the response surface method using a three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved-blade centrifugal fan is described. For the numerical analysis, Reynolds-averaged Navier-Stokes equations with the standard k-ε turbulence model are discretized with finite volume approximations. The SIMPLEC algorithm is used as a velocity–pressure correction procedure. In order to reduce the huge computing time due to a large number of blades in forward-curved-blade centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Four design variables, i.e., location of cutoff, radius of cutoff, expansion angle of scroll, and width of impeller, were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and a linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. Effects of the relative size of the inactive zone at the exit of impeller and momentum fluxes of the flow in scroll on efficiency were further discussed. It was found that the optimization process provides a reliable design of this kind of fan with reasonable computing time.


2000 ◽  
Author(s):  
R. J. Yang ◽  
C. H. Tho ◽  
C. C. Gearhart ◽  
Y. Fu

Abstract This paper presents an approach, based on numerical optimization techniques, to identify an ideal (5 star) crash pulse and generate a band of acceptable crash pulses surrounding that ideal pulse. This band can be used by engineers to quickly determine whether a design will satisfy government and corporate safety requirements, and whether the design will satisfy the requirements for a 5 star crash rating. A piecewise linear representation of the crash pulse with two plateaus is employed for its conceptual simplicity and because such a pulse has been shown to be sufficient for reproducing occupant injury behavior when used as input into MADYMO models. The piecewise linear crash pulse is parameterized with 7 design variables (5 for time domain and 2 for acceleration domain) in the optimization process. A series of sample runs are conducted to validate that pulses falling within the acceptable crash pulse band do in fact satisfy 5 star requirements.


2004 ◽  
Vol 10 (5) ◽  
pp. 373-385
Author(s):  
Steffen Kämmerer ◽  
Jürgen F. Mayer ◽  
Heinz Stetter ◽  
Meinhard Paffrath ◽  
Utz Wever ◽  
...  

This article describes the development of a method for optimization of the geometry of three-dimensional turbine blades within a stage configuration. The method is based on flow simulations and gradient-based optimization techniques. This approach uses the fully parameterized blade geometry as variables for the optimization problem. Physical parameters such as stagger angle, stacking line, and chord length are part of the model. Constraints guarantee the requirements for cooling, casting, and machining of the blades.The fluid physics of the turbomachine and hence the objective function of the optimization problem are calculated by means of a three-dimensional Navier-Stokes solver especially designed for turbomachinery applications. The gradients required for the optimization algorithm are computed by numerically solving the sensitivity equations. Therefore, the explicitly differentiated Navier-Stokes equations are incorporated into the numerical method of the flow solver, enabling the computation of the sensitivity equations with the same numerical scheme as used for the flow field solution.This article introduces the components of the fully automated optimization loop and their interactions. Furthermore, the sensitivity equation method is discussed and several aspects of the implementation into a flow solver are presented. Flow simulations and sensitivity calculations are presented for different test cases and parameters. The validation of the computed sensitivities is performed by means of finite differences.


Author(s):  
Qian Wang ◽  
Lucas Schmotzer ◽  
Yongwook Kim

<p>Structural designs of complex buildings and infrastructures have long been based on engineering experience and a trial-and-error approach. The structural performance is checked each time when a design is determined. An alternative strategy based on numerical optimization techniques can provide engineers an effective and efficient design approach. To achieve an optimal design, a finite element (FE) program is employed to calculate structural responses including forces and deformations. A gradient-based or gradient-free optimization method can be integrated with the FE program to guide the design iterations, until certain convergence criteria are met. Due to the iterative nature of the numerical optimization, a user programming is required to repeatedly access and modify input data and to collect output data of the FE program. In this study, an approximation method was developed so that the structural responses could be expressed as approximate functions, and that the accuracy of the functions could be adaptively improved. In the method, the FE program was not required to be directly looped in the optimization iterations. As a practical illustrative example, a 3D reinforced concrete building structure was optimized. The proposed method worked very well and optimal designs were found to reduce the torsional responses of the building.</p>


Author(s):  
Chan-Sol Ahn ◽  
Kwang-Yong Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


Author(s):  
H Zhou ◽  
D Li ◽  
S Cui

A three-dimensional numerical simulation using the boundary element method is proposed, which can predict the cavity temperature distributions in the cooling stage of injection moulding. Then, choosing the radii and positions of cooling lines as design variables, the boundary integral sensitivity formulations are deduced. For the optimum design of cooling lines, the squared difference between the objective temperature and the temperature of the cavity is taken as the objective function. Based on the optimization techniques with design sensitivity analysis, an iterative algorithm to reach the minimum value of the objective function is introduced, which leads to the optimum design of cooling lines at the same time.


Author(s):  
Lukas Benjamin Inhestern ◽  
James Braun ◽  
Guillermo Paniagua ◽  
José Ramón Serrano Cruz

Abstract New compact engine architectures such as pressure gain combustion require ad-hoc turbomachinery to ensure an adequate range of operation with high performance. A critical factor for supersonic turbines is to ensure the starting of the flow passages, which limits the flow turning and airfoil thickness. Radial outflow turbines inherently increase the cross section along the flow path, which holds great potential for high turning of supersonic flow with a low stage number and guarantees a compact design. First the preliminary design space is described. Afterwards a differential evolution multi-objective optimization with 12 geometrical design parameters is deducted. With the design tool AutoBlade 10.1, 768 geometries were generated and hub, shroud, and blade camber line were designed by means of Bezier curves. Outlet radius, passage height, and axial location of the outlet were design variables as well. Structured meshes with around 3.7 million cells per passage were generated. Steady three dimensional Reynolds averaged Navier Stokes (RANS) simulations, enclosed by the k-omega SST turbulence model were solved by the commercial solver CFD++. The geometry was optimized towards low entropy and high power output. To prove the functionality of the new turbine concept and optimization, a full wheel unsteady RANS simulation of the optimized geometry exposed to a nozzled rotating detonation combustor (RDC) has been performed and the advantageous flow patterns of the optimization were also observed during transient operation.


Author(s):  
Seoung-Jin Seo ◽  
Kwang-Yong Kim

This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with k-ε turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.


Author(s):  
S. Pierret ◽  
H. Kato ◽  
R. Filomeno Coelho ◽  
A. Merchant

The detailed design of three-dimensional turbomachinery blades is a very challenging problem requiring multi-disciplinary analysis (MDA), efficient numerical optimization techniques and efficient shape parameterization techniques. Moreover, CAD systems have become an integral and critical part of the complete design process in various fields, and in particular in the field of turbomachine design. The connection of an automated design system to drive CAD geometry directly in the native CAD software is therefore mandatory in order to obtain an integrated design system that can be used in an industrial design chain. This paper presents and discusses an effort to incorporate these technologies into a single and integrated design system for the automatic optimization of turbomachinery blades. First, a brief summary of the algorithms and software used in this design system is presented. Then, the performance of this design system is first demonstrated on the automatic optimization of a counter-rotating fan stage. The fan is redesigned for several aerodynamic operating conditions as well as for multi-disciplinary objectives with constraints involving a CFD solver and structural mechanics FEM solver. The fan geometry is parameterized using 70 design variables and an optimum solution is found in 300 optimization cycles. The peak efficiency is increased by 1.5%, while the static stresses and dynamic vibration modes satisfy the constraints imposed during the optimization. Finally, a second application demonstrates the design optimization of a CAD model of the counter-rotating fan performed with direct integration to the CAD system using the CAPRI middleware. In this case the tip section of the first rotor is parameterized using 7 design variables. The efficiency is increased by 0.5% and the CAD integration in the optimization cycle is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document