Improved Serpentine Laminating Micromixer: Numerical Investigation and Experimental Verification

Author(s):  
Jang Min Park ◽  
Dong Sung Kim ◽  
Tae Gon Kang ◽  
Tai Hun Kwon

It is a difficult task to achieve an efficient mixing inside a microchannel since the flow is characterized by low Reynolds number (Re). Recently, the serpentine laminating micromixer (SLM) was reported to achieve an efficient chaotic mixing by introducing ‘F’-shape mixing units successively in two layers such that two chaotic mixing mechanisms, namely splitting/recombination and chaotic advection, enhance the mixing performance in combination. The present study describes an improved serpentine laminating micromixer (ISLM) with a novel redesign of the ‘F’-shape mixing unit. Reduced cross-sectional area at the recombination region of ISLM locally enhances advection effect which helps better vertical lamination, resulting in improved mixing performance. Flow characteristics and mixing performances of SLM and ISLM are investigated numerically and verified experimentally. Numerical analysis system is developed based on a finite element method and a colored particle tracking method, while mixing entropy is adopted as a quantitative mixing measure. Numerical analysis result confirms enhanced vertical lamination performance and consequently improved mixing performance of ISLM. For experimental verification, SLM and ISLM were fabricated by polydimethylsiloxane (PDMS) casting against SU-8 patterned masters. Mixing performance is observed by normalized red color intensity change of phenolphthalein along the downchannel. Flow characteristics of SLM and ISLM are investigated by tracing the red interface of two streams via optical micrograph. The normalized mixing intensity behavior confirms improved mixing performance of ISLM, which is consistent with numerical analysis result.

2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Tetsuaki Takeda

When a depressurization accident of a very-high-temperature reactor (VHTR) occurs, air is expected to enter into the reactor pressure vessel from the breach and oxidize in-core graphite structures. Therefore, in order to predict or analyze the air ingress phenomena during a depressurization accident, it is important to develop a method for the prevention of air ingress during an accident. In particular, it is also important to examine the influence of localized natural convection and molecular diffusion on the mixing process from a safety viewpoint. Experiment and numerical analysis using a three-dimensional (3D) computational fluid dynamics code have been carried out to obtain the mixing process of two-component gases and the flow characteristics of localized natural convection. The numerical model consists of a storage tank and a reverse U-shaped vertical rectangular passage. One sidewall of the high-temperature side vertical passage is heated, and the other sidewall is cooled. The low-temperature vertical passage is cooled by ambient air. The storage tank is filled with heavy gas and the reverse U-shaped vertical passage is filled with a light gas. The result obtained from the 3D numerical analysis was in agreement with the experimental result quantitatively. The two component gases were mixed via molecular diffusion and natural convection. After some time elapsed, natural circulation occurred through the reverse U-shaped vertical passage. These flow characteristics are the same as those of phenomena generated in the passage between a permanent reflector and a pressure vessel wall of the VHTR.


2003 ◽  
Author(s):  
Duk-Sang Kim ◽  
Yeun-Jun Yoo ◽  
Yong-Seok Cho ◽  
In-Yong Ohm

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1470
Author(s):  
Omid Rouhi ◽  
Sajad Razavi Bazaz ◽  
Hamid Niazmand ◽  
Fateme Mirakhorli ◽  
Sima Mas-hafi ◽  
...  

Mixing at the microscale is of great importance for various applications ranging from biological and chemical synthesis to drug delivery. Among the numerous types of micromixers that have been developed, planar passive spiral micromixers have gained considerable interest due to their ease of fabrication and integration into complex miniaturized systems. However, less attention has been paid to non-planar spiral micromixers with various cross-sections and the effects of these cross-sections on the total performance of the micromixer. Here, mixing performance in a spiral micromixer with different channel cross-sections is evaluated experimentally and numerically in the Re range of 0.001 to 50. The accuracy of the 3D-finite element model was first verified at different flow rates by tracking the mixing index across the loops, which were directly proportional to the spiral radius and were hence also proportional to the Dean flow. It is shown that higher flow rates induce stronger vortices compared to lower flow rates; thus, fewer loops are required for efficient mixing. The numerical study revealed that a large-angle outward trapezoidal cross-section provides the highest mixing performance, reaching efficiencies of up to 95%. Moreover, the velocity/vorticity along the channel length was analyzed and discussed to evaluate channel mixing performance. A relatively low pressure drop (<130 kPa) makes these passive spiral micromixers ideal candidates for various lab-on-chip applications.


Sign in / Sign up

Export Citation Format

Share Document