A General Correlation for Condensation Heat Transfer in Micro-Fin for Herringbone and Dimple-Texture Tubes

Author(s):  
Wei Li ◽  
Si-pu Guo ◽  
Xiao-peng Zhou ◽  
David J. Kukulka ◽  
Jin-liang Xu

An experimental investigation was performed to evaluate the condensation characteristics inside smooth, herringbone and dimple-textured (Vipertex 1EHT) tubes; with the same outer diameter (12.7 mm); using R22 and R410a refrigerants; for a mass flux that ranges from 81 to 178.5 kg/m 2 s. The condensation saturation temperature is 47°C; with an inlet quality of 0.8 and an outlet vapor quality of 0.2. Results indicate that the condensation heat transfer coefficient of the herringbone tube was approximately 3 times that of the smooth tube for R22; and has an enhancement heat transfer factor of 2.3 for R410a. The enhancement heat transfer coefficient multiplier for the textured dimple tube is approximately 2 times that of a smooth tube for R22; and 1.8 for R410a. Severalpreviously reported correlations are used to compare the heat transfer coefficient measurements in the plain tube; while a new equation is proposed to predict the heat transfer coefficient in the herringbone tube.

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Weiyu Tang ◽  
Wei Li

Abstract An experimental investigation into heat transfer characteristics during condensation on two horizontal enhanced tubes (EHTs) was conducted. All the tested EHTs s have similar geometries with an outer diameter of 12.7 mm, and a plain tube was also tested for comparison. Investigated enhanced surfaces consist of dimples, protrusions, and grooves, which may produce more flow turbulence and enhanced the liquid drainage effect. The effects of mass fluxes and vapor quality were compared and analyzed. Test conditions were as follows: saturation temperature fixed at 45 °C, mass flux varying from 100 to 200 kg m−2 s−1, and vapor quality ranging from 0.3 to 0.8. The heat transfer coefficient was presented, and the results show that the proposed enhanced surfaces seem to have worse performance than the conventional tubes when the mass flux is less than 150 kg m−2 s−1, while one of the enhanced tubes (2EHT-1) produce an enhanced ratio of 1.03–1.14 when G = 200 kg m−2 s−1. Besides, it was found that the heat transfer coefficient increases with increasing vapor quality, which can be attributed to the increasing diffusion resistance. Mass flux seems to have little effect on the heat transfer performance of smooth tubes, while that of 1EHT increases obviously with increasing mass flux, especially for high vapor qualities.


Author(s):  
Lei Wang ◽  
Weiyu Tang ◽  
Limin Zhao ◽  
Wei Li

Abstract An experimental investigation was conducted on falling film evaporation along two porous tubes, which were sintered by stainless-steel powder with a diameter of 0.45 and 1 um, respectively. The test section is a 2 m long sintered tube with an outer diameter of 25 mm and a wall thickness of 2 mm. During the experiment, the pressure inside the tube was maintained at 1 atm, the inlet temperature was 373 K, and mass flux ranged from 0.51 to 1.36 kg/ (m s). Conditions of the steam outside the pipe, which was the heat source, were fixed, while the fouling tests were carried out at a constant mass flow of 0.74 kg/ (m s) using high-concentration brine as work fluid. The overall heat transfer coefficient under different working conditions was tested and compared with the stainless steel smooth tube of the same dimensions. The heat transfer coefficient of the two porous stainless tubes are about 35% and 20% lower than that of the smooth one, showing an inferior effect because the steam in the pores of the pipe wall during the infiltration process will reduce the heat conductivity. The heat transfer coefficient of the smooth tube deteriorated severely due to the deposition of calcium carbonate, which had little effect on the sintered tubes. Besides, the fouling weight of porous tubes is 2.01 g and 0 g compared with 5.52 g of the smooth tube.


2020 ◽  
Vol 24 (06) ◽  
pp. 115-126
Author(s):  
Mohammed Ghazi M. Kamil ◽  
◽  
Muna Sabah Kassim ◽  
Louay Abd Alazez Mahdi ◽  
◽  
...  

The heat transfer coefficient of steam condensation has a significant role in the performance of air-cooled heat exchangers. The purpose of this work is to predict the local/average local steam condensation heat transfer coefficient inside the horizontal flattened tube under vacuum conditions using numerous correlations that were developed by some researches which have been conducted under specified conditions. The results from these correlations have been compared with experimental data of Davies, therefore more investigate for the values are necessary to improve or/and validate the existing correlations. The effect of such parameters like the uniform heat flux and saturation temperature also have been studied on the local steam condensation heat transfer coefficient as the results show that the heat transfer coefficient decrease as the heat flux increase, while it increases as the steam saturated temperature increase.


Author(s):  
Xiao-peng Zhou ◽  
David J. Kukulka ◽  
Jing Li ◽  
Jian-Jun Sun ◽  
Wei Li

Heat transfer enhancement plays an important role in improving energy efficiency and developing high performance thermal systems. Phase-change heat transfer processes take place in thermal systems; typically heat transfer enhanced tubes are used in these systems and they are designed to increase heat transfer coefficients in evaporation and condensation. Enhanced heat transfer tubes are widely used in refrigeration and air-conditioning applications in order to reduce cost and create a smaller footprint of the application. Microfins, roughness and dimples are often incorporated into the inner surface of tubes in order to enhance heat transfer performance. Under many conditions, enhanced surface tubes can recover more energy and provide the opportunity to advance the design of many heat transfer products. Convective condensation heat transfer and pressure loss characteristics were investigated for R410A on the outside of: (i) a smooth tube (outer diameter 12.7 mm); (ii) an external herringbone tube (fin root diameter 12.7 mm); and (iii) the 1EHT tube (outer diameter 12.7 mm) for very low mass fluxes. Data was obtained for values of mass flux ranging from 8 to 50 kg/(m2 s); at a saturation temperature of 318 K; with an inlet quality of 0.8 (±0.05) and an outlet quality of 0.1 (±0.05). In a comparison of heat transfer at a low mass flux, both the 1EHT tube and the herringbone tube did not perform as well as the smooth tube. And it’s difficult to analyze the reason for this strange phenomenon.


Author(s):  
Xiao-peng Zhou ◽  
Jian-jun Sun ◽  
Si-pu Guo ◽  
Sun Zhichuan ◽  
Wei Li

An experimental investigation was performed for evaporation and condensation characteristics inside smooth tube, herringbone tube and EHT tube with the same outer diameter 12.7 mm, refrigerant are R22 and R410a. Mass flux are 60–140 kg/m2s, 81–178.5 kg/m2s, for evaporation and condensation respectively. The evaporation saturation temperature is 6°C, with inlet and outlet vapor qualities of 0.1 and 0.9, respectively. The condensation saturation temperature is 47°C, with inlet and outlet vapor qualities of 0.8 and 0.2, respectively. EHT tube has best evaporating performance for both R22 and R410a. Herringbone tube is also batter than smooth tube. Evaporation heat transfer coefficient increases with mass flux increasing obviously. Pressure drop of R22 evaporation in EHT tube is the highest, herringbone tube is a little higher than in smooth tube. Herringbone tube has highest condensation heat transfer coefficient, about 3 and 2.3 times that of smooth tube for R22 and R410a respectively. EHT tube has heat transfer coefficient about 2 and 1.8 times that of smooth tube for R22 and R410a respectively. Condensation heat transfer coefficient increases with increasing of mass flux, but very slowly, R410a flow in micro-fin tube even decreases with mass flux increasing.


2018 ◽  
Vol 8 (11) ◽  
pp. 2267 ◽  
Author(s):  
Norihiro Inoue ◽  
Masataka Hirose ◽  
Daisuke Jige ◽  
Junya Ichinose

In this study, the condensation heat transfer coefficient and pressure drop characteristics of a 4 mm outside diameter smooth tube, using R32, R152a, R410A, and R1234ze(E) refrigerants, were examined. Condensation heat transfer coefficients and pressure drops were measured at a saturation temperature of 35 °C, in the region of mass velocities from 100 to 400 kg m−2s−1. The frictional pressure drop, and the condensation heat transfer from the new measurements, using R1234ze(E) as a refrigerant, were compared with those of R32, R152a, and R410A, in the smooth tube. Experimental values of condensation heat transfer coefficient of smooth tube were also compared to the predicted values obtained using the previously established correlations. The previous correlation from Cavallini et al., for the condensation heat transfer coefficient of small-diameter smooth tube, was estimated to be within ±30%. However, the general correlation, which can be easily predicted, for condensation heat transfer inside small-diameter smooth tubes, was suggested, and the relationship of the general correlation was compared with data for R1234ze(E) obtained by us, and R404A and R290 obtained by other researchers.


Author(s):  
Yu Guo ◽  
Zong-bao Gu ◽  
Zahid Ayub ◽  
Wei Li ◽  
Xiang Ma ◽  
...  

Abstract In this paper, the condensation heat transfer characteristics of R134a inside enhanced tubes using two type of surface structures with different materials was investigated, which were then compared with plain tubes under the same test conditions. The enhanced tubes were: 1EHTa tube with dimpled and petal arrays structure and 1EHTb tube with protrusion and similar petal arrays structure. The experiment was conducted for a mass flux ranging from 100 to 200 kg m−2 s−1 with saturation temperature of 318 K. The inlet and outlet vapor qualities were fixed at 0.8 and 0.2, respectively. The test tubes had the same outer diameter of 12.7 mm. Results showed that the dimpled and protruded surface tubes enhanced the convection condensation heat transfer and the heat transfer coefficient was 1.4 to 1.6 times higher than that of the smooth tube. Heat transfer enhancement of the 1EHTa and 1EHTb tube was mainly due to the complex roughness surface structures that created swirling and increased the interface turbulence. Enhanced tubes exhibited higher performance factors compared to the smooth tube. The average performance factor was 1.3–1.5. As the flow rate increases, there is no significant increase in the condensation heat transfer coefficient. The pressure drop penalty increased with mass flux. Compared with smooth tube, the pressure drop penalty of enhanced tube was larger.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Wei Li ◽  
Yu Guo ◽  
Zong-Bao Gu ◽  
Xiang Ma ◽  
Zahid Ayub ◽  
...  

Abstract In this paper, the condensation heat transfer characteristics of R134a inside enhanced tubes using two types of surface structures with different materials were investigated, which were then compared with plain tubes under the same test conditions. The enhanced tubes were: 1EHTa tube with dimpled and petal arrays structure and 1EHTb tube with protrusion and similar petal arrays structure. The experiment was conducted for a mass flux ranging from 100 to 200 kg m−2 s−1 with saturation temperature of 318.15 K. The inlet and outlet vapor qualities were fixed at 0.8 and 0.2, respectively. The test tubes had the same outer diameter of 12.7 mm. Results showed that the dimpled and protruded surface tubes enhanced the convection condensation heat transfer and the heat transfer coefficient was 1.4–1.6 times higher than that of the smooth tube. Heat transfer enhancement of the 1EHTa and 1EHTb tube was mainly due to the complex roughness surface structures that created swirling and increased the interface turbulence. The condensation heat transfer coefficient increased slightly with increasing mass flux. The pressure drop penalty was found to increase as mass flux increased. Compared with the smooth tube, the pressure drop of Cu-1EHTa tube, SS-1EHTa tube, and Cu-1EHTb tube were 1.15, 1.21, and 1.14 of smooth tube, respectively. Enhanced tubes exhibited higher performance factors (PFs) compared to the smooth tube. The average PF was 1.3–1.5. A new correlation of heat transfer coefficient has been developed within ±15% error band.


Author(s):  
Brandon Hulet ◽  
Andres Martinez ◽  
Melanie Derby ◽  
Amy Rachel Betz

This research experimentally investigates the heat transfer performance of open-micro channels under filmwise condensation conditions. Filmwise condensation is an important factor in the design of steam condensers used in thermoelectric power generation, desalination, and other industrial applications. Filmwise condensation averages five times lower heat transfer coefficients than those present in dropwise condensation, and filmwise condensation is the dominant condensation regime in the steam condensers due to a lack of a durable dropwise condensation surface. Film thickness is also of concern because it is directly proportional to the condenser’s overall thermal resistance. This research focuses on optimizing the channel size to inhibit the creation of a water film and/or to reduce its overall thickness in order to maximize the heat transfer coefficient of the surface. Condensation heat transfer was measured in three square channels and a plane surface as a control. The sizes of the square fins were 0.25 mm; 0.5 mm; and 1 mm, and tests were done at a constant pressure of 6.2 kPa. At lower heat fluxes, the 0.25mm fins perform better, whereas at larger heat fluxes a smooth surface offers better performance. At lower heat fluxes, droplets are swept away by gravity before the channels are flooded. Whereas, at higher heat fluxes, the channels are flooded increasing the total film thickness, thereby reducing the heat transfer coefficient.


Author(s):  
Desong Yang ◽  
Zhichuan Sun ◽  
Wei Li

Abstract An experimental investigation of shell-side flow condensation heat transfer was performed on advanced three-dimensional surface-enhanced tubes, including a herringbone micro-fin tube and a newly-developed 1-EHT tube. An equivalent plain tube was also tested for performance comparison. All of the test tubes have similar geometry parameters (inner diameter 11.43mm, outer diameter 12.7mm). Tests were conducted using R410A as the working fluid at a condensation saturation temperature of 45 °C, covering the mass flux range of 10–55 kg/(m2·s) with an inlet quality of 0.8 and an outlet quality of 0.1. Experimental results showed that the plain tube exhibits a better condensation heat transfer performance when compared to the enhanced tubes. Moreover, the mass flux has a significant influence on the heat transfer coefficient for shell-side condensation: the condensation heat transfer coefficient of plain tube decreases when the refrigerant mass flux becomes larger, while the heat transfer coefficient of herringbone tube shows a non-monotonic trend and the heat transfer coefficient of the 1-EHT tube gets higher with increasing refrigerant mass flux. Besides, A new prediction model based on the Cavallini’s equation was developed to predict the condensing coefficient of the three test tubes, and the mean absolute error of the improved equations is less than 4%.


Sign in / Sign up

Export Citation Format

Share Document