Condensation Heat Transfer Characteristics on the Outside of Horizontal Smooth, Herringbone and Enhanced Surface 1EHT Tubes

Author(s):  
Xiao-peng Zhou ◽  
David J. Kukulka ◽  
Jing Li ◽  
Jian-Jun Sun ◽  
Wei Li

Heat transfer enhancement plays an important role in improving energy efficiency and developing high performance thermal systems. Phase-change heat transfer processes take place in thermal systems; typically heat transfer enhanced tubes are used in these systems and they are designed to increase heat transfer coefficients in evaporation and condensation. Enhanced heat transfer tubes are widely used in refrigeration and air-conditioning applications in order to reduce cost and create a smaller footprint of the application. Microfins, roughness and dimples are often incorporated into the inner surface of tubes in order to enhance heat transfer performance. Under many conditions, enhanced surface tubes can recover more energy and provide the opportunity to advance the design of many heat transfer products. Convective condensation heat transfer and pressure loss characteristics were investigated for R410A on the outside of: (i) a smooth tube (outer diameter 12.7 mm); (ii) an external herringbone tube (fin root diameter 12.7 mm); and (iii) the 1EHT tube (outer diameter 12.7 mm) for very low mass fluxes. Data was obtained for values of mass flux ranging from 8 to 50 kg/(m2 s); at a saturation temperature of 318 K; with an inlet quality of 0.8 (±0.05) and an outlet quality of 0.1 (±0.05). In a comparison of heat transfer at a low mass flux, both the 1EHT tube and the herringbone tube did not perform as well as the smooth tube. And it’s difficult to analyze the reason for this strange phenomenon.

Author(s):  
Wei Li ◽  
Si-pu Guo ◽  
Xiao-peng Zhou ◽  
David J. Kukulka ◽  
Jin-liang Xu

An experimental investigation was performed to evaluate the condensation characteristics inside smooth, herringbone and dimple-textured (Vipertex 1EHT) tubes; with the same outer diameter (12.7 mm); using R22 and R410a refrigerants; for a mass flux that ranges from 81 to 178.5 kg/m 2 s. The condensation saturation temperature is 47°C; with an inlet quality of 0.8 and an outlet vapor quality of 0.2. Results indicate that the condensation heat transfer coefficient of the herringbone tube was approximately 3 times that of the smooth tube for R22; and has an enhancement heat transfer factor of 2.3 for R410a. The enhancement heat transfer coefficient multiplier for the textured dimple tube is approximately 2 times that of a smooth tube for R22; and 1.8 for R410a. Severalpreviously reported correlations are used to compare the heat transfer coefficient measurements in the plain tube; while a new equation is proposed to predict the heat transfer coefficient in the herringbone tube.


Author(s):  
Xu Chen ◽  
Xiaoqiang Hong ◽  
Wei Li ◽  
David J. Kukulka

An experimental investigation of R410A condensation outside a horizontal smooth tube, a herringbone tube and a newly developed enhanced surface EHT tube has been conducted. The herringbone tube has a fin root diameter of 11.43 mm, a helical angle of 21.3 °, 48 fins with a fin height of 0.262 mm and an apex angle of 36 °, the EHT tube has an outer diameter of 11.5 mm with special structure, while the smooth tube has an outer diameter of 11.43 mm. Experiments were taken at a constant saturation temperature of 45 °C, a constant inlet vapor quality of 0.8 and a constant outlet vapor quality of 0.1; mass flux ranging from 5 kg/(m2.s) to 250 kg/(m2.s). Those tubes have different heat transfer performance at different mass flux. The EHT tube has the least heat transfer coefficient than the other two tubes at a low mass flux, while at a high mass flux, the enhanced tubes have a better heat transfer performance than the smooth tube. Heat transfer performance combined with pressure drop measurements reveal that the herringbone tube generally has a better heat transfer performance than the EHT tube, pointing out the herringbone is a wise choice for shell side condensation instead of the EHT tube. Characteristic analysis is made to account for various phenomena in this series of experiments.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Wei Li ◽  
Xu Chen ◽  
Jing-Xiang Chen ◽  
Zhi-Chuan Sun ◽  
Terrence W. Simon

An investigation of refrigerant R410A condensation on a shell and tube heat exchanger simulation is conducted. Tests are on the outside of a horizontal smooth tube, a herringbone tube, and a newly developed three-dimensional-enhanced tube, called the enhanced tube (EHT) tube, all of the same outer diameter. Experiments were conducted at a constant saturation temperature of 45 °C, a constant inlet vapor quality of 0.8, a constant outlet vapor quality of 0.1, and mass fluxes ranging from 5 kg/(m2 s) to 50 kg/(m2 s). At low-mass velocities, the smooth tube shows superior performance over the herringbone tube and the EHT tube. The cause might lie in surface tension effects that result in liquid inundation at the lower portion of the tube, thickening the film on the tube and deteriorating the heat transfer performance. Analyses were conducted to find a suitable correlation of the experimental data.


Author(s):  
Xiao-peng Zhou ◽  
Jian-jun Sun ◽  
Si-pu Guo ◽  
Sun Zhichuan ◽  
Wei Li

An experimental investigation was performed for evaporation and condensation characteristics inside smooth tube, herringbone tube and EHT tube with the same outer diameter 12.7 mm, refrigerant are R22 and R410a. Mass flux are 60–140 kg/m2s, 81–178.5 kg/m2s, for evaporation and condensation respectively. The evaporation saturation temperature is 6°C, with inlet and outlet vapor qualities of 0.1 and 0.9, respectively. The condensation saturation temperature is 47°C, with inlet and outlet vapor qualities of 0.8 and 0.2, respectively. EHT tube has best evaporating performance for both R22 and R410a. Herringbone tube is also batter than smooth tube. Evaporation heat transfer coefficient increases with mass flux increasing obviously. Pressure drop of R22 evaporation in EHT tube is the highest, herringbone tube is a little higher than in smooth tube. Herringbone tube has highest condensation heat transfer coefficient, about 3 and 2.3 times that of smooth tube for R22 and R410a respectively. EHT tube has heat transfer coefficient about 2 and 1.8 times that of smooth tube for R22 and R410a respectively. Condensation heat transfer coefficient increases with increasing of mass flux, but very slowly, R410a flow in micro-fin tube even decreases with mass flux increasing.


Author(s):  
Yu Guo ◽  
Zong-bao Gu ◽  
Zahid Ayub ◽  
Wei Li ◽  
Xiang Ma ◽  
...  

Abstract In this paper, the condensation heat transfer characteristics of R134a inside enhanced tubes using two type of surface structures with different materials was investigated, which were then compared with plain tubes under the same test conditions. The enhanced tubes were: 1EHTa tube with dimpled and petal arrays structure and 1EHTb tube with protrusion and similar petal arrays structure. The experiment was conducted for a mass flux ranging from 100 to 200 kg m−2 s−1 with saturation temperature of 318 K. The inlet and outlet vapor qualities were fixed at 0.8 and 0.2, respectively. The test tubes had the same outer diameter of 12.7 mm. Results showed that the dimpled and protruded surface tubes enhanced the convection condensation heat transfer and the heat transfer coefficient was 1.4 to 1.6 times higher than that of the smooth tube. Heat transfer enhancement of the 1EHTa and 1EHTb tube was mainly due to the complex roughness surface structures that created swirling and increased the interface turbulence. Enhanced tubes exhibited higher performance factors compared to the smooth tube. The average performance factor was 1.3–1.5. As the flow rate increases, there is no significant increase in the condensation heat transfer coefficient. The pressure drop penalty increased with mass flux. Compared with smooth tube, the pressure drop penalty of enhanced tube was larger.


2018 ◽  
Vol 8 (11) ◽  
pp. 2146 ◽  
Author(s):  
M. Khairul Bashar ◽  
Keisuke Nakamura ◽  
Keishi Kariya ◽  
Akio Miyara

This study was made to investigate the condensation local heat transfer and adiabatic pressure drop of R134a inside a 2.5 mm outside diameter smooth and microfin tube at low mass flux condition. Data were measured for mass fluxes from 50 to 300 kg m−2s−1, vapor qualities from 0 to 1 and saturation temperatures from 20 to 30 °C. The effects of mass flux, vapor quality, saturation temperature, microfin and diameter of test tube were analyzed. The pressure drop of the microfin tube was about 1.5 times higher than that of the smooth tube at mass flux 50 kg m−2s−1. The heat transfer coefficient of the microfin tube was about 2–5 times higher than that of the smooth tube at mass flux 100 kg m−2s−1. Experimental results were also compared with typical correlations. For the microfin tube, however, all the existing correlations do not adequately predict the present data. Poor predictions may be attributed to the lack of the small diameter microfin tube with low mass flux data in their database. Hence, it is essential to develop a condensation and pressure drop correlation for the small diameter microfin tube at low mass flux condition.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Wei Li ◽  
Yu Guo ◽  
Zong-Bao Gu ◽  
Xiang Ma ◽  
Zahid Ayub ◽  
...  

Abstract In this paper, the condensation heat transfer characteristics of R134a inside enhanced tubes using two types of surface structures with different materials were investigated, which were then compared with plain tubes under the same test conditions. The enhanced tubes were: 1EHTa tube with dimpled and petal arrays structure and 1EHTb tube with protrusion and similar petal arrays structure. The experiment was conducted for a mass flux ranging from 100 to 200 kg m−2 s−1 with saturation temperature of 318.15 K. The inlet and outlet vapor qualities were fixed at 0.8 and 0.2, respectively. The test tubes had the same outer diameter of 12.7 mm. Results showed that the dimpled and protruded surface tubes enhanced the convection condensation heat transfer and the heat transfer coefficient was 1.4–1.6 times higher than that of the smooth tube. Heat transfer enhancement of the 1EHTa and 1EHTb tube was mainly due to the complex roughness surface structures that created swirling and increased the interface turbulence. The condensation heat transfer coefficient increased slightly with increasing mass flux. The pressure drop penalty was found to increase as mass flux increased. Compared with the smooth tube, the pressure drop of Cu-1EHTa tube, SS-1EHTa tube, and Cu-1EHTb tube were 1.15, 1.21, and 1.14 of smooth tube, respectively. Enhanced tubes exhibited higher performance factors (PFs) compared to the smooth tube. The average PF was 1.3–1.5. A new correlation of heat transfer coefficient has been developed within ±15% error band.


Author(s):  
Xiaolong Yan ◽  
Wei Li ◽  
Weiyu Tang ◽  
Hua Zhu ◽  
Zhijian Sun ◽  
...  

Enhanced condensation heat transfer of two-phase flow on the horizontal tube side receives more and more concerns for its fundamentality and importance. Experimental investigations on convective condensation were performed respectively in different horizontal tubes: (i) a smooth tube (11.43 mm, inner diameter); (ii) a herringbone tube (11.43 mm, fin root diameter); and (iii) three enhanced surface (EHT) tubes (11.5 mm, equivalent inner diameter): 1EHT tube, 2EHT-1 tube and 2EHT-2 tubes. The surface of EHT tubes is enhanced by arrays of dimples with the background of petal arrays. Experiments were conducted at a saturation temperature of approximately 320 K; 0.8 inlet quality; and 0.2 outlet quality; 72–181 kg·m−2·s−1 mass flux using R22, R32 and R410A as the working fluid. The refrigerant R32 presents great heat transfer performance than R410A and R22 at low mass flux due to its higher latent heat of vaporization and larger thermal conductivity. The heat enhancement ratio of the herringbone tube is 2.72–2.82, rated number one. The primary dimples on the EHT tube increase turbulence and flow separation, and the secondary petal pattern produce boundary layer disruption to many smaller scale eddies. The 2EHT tubes are inferior to the 1EHT tube. A performance factor is used to evaluate the enhancement effect except of the contribution of area increase.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Weiyu Tang ◽  
Wei Li

Abstract An experimental investigation into heat transfer characteristics during condensation on two horizontal enhanced tubes (EHTs) was conducted. All the tested EHTs s have similar geometries with an outer diameter of 12.7 mm, and a plain tube was also tested for comparison. Investigated enhanced surfaces consist of dimples, protrusions, and grooves, which may produce more flow turbulence and enhanced the liquid drainage effect. The effects of mass fluxes and vapor quality were compared and analyzed. Test conditions were as follows: saturation temperature fixed at 45 °C, mass flux varying from 100 to 200 kg m−2 s−1, and vapor quality ranging from 0.3 to 0.8. The heat transfer coefficient was presented, and the results show that the proposed enhanced surfaces seem to have worse performance than the conventional tubes when the mass flux is less than 150 kg m−2 s−1, while one of the enhanced tubes (2EHT-1) produce an enhanced ratio of 1.03–1.14 when G = 200 kg m−2 s−1. Besides, it was found that the heat transfer coefficient increases with increasing vapor quality, which can be attributed to the increasing diffusion resistance. Mass flux seems to have little effect on the heat transfer performance of smooth tubes, while that of 1EHT increases obviously with increasing mass flux, especially for high vapor qualities.


2020 ◽  
Vol 207 ◽  
pp. 01009
Author(s):  
Thanh Nhan Phan ◽  
Van Hung Tran ◽  
Nikola Kaloyanov ◽  
Momchil Vassilev

This study analyses the performance of heat transfer process which occurs in the convective boiling of Hydro fluoro Olefin (HFO) refrigerant, R1234yf, in horizontal tube. Heat transfer and pressure drop of R1234yf are analyzed and computed at the same working conditions on the same size of outer diameter of tube do = 9.52 mm with difference of inner surface, one is a smooth surface and microfin for other. The flow pattern maps were built at 5°C saturation temperature with 8.62 kW/m2 of heat flux, it is presented that flow pattern of helix flow occurs at very low mass flux and low quality, while at that condition on smooth tube the flow is still stratified wavy flow. The comparison of heat transfer performance between microfin and smooth tube would be evaluated on enhancement factor E, penalty factor P and efficiency index I. With the mass flux on the range G = 111 -- 333 kg/m2s for 5°C boiling temperature, the results show that, average value of E is 2.18; 1.45 of P and 1.54 of I. One more impressing thing is that, at the quality “x” larger than 0.8, the dryout phenomenon takes place on smooth tubes while microfin tubes do not have this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document