Active High-Throughput Micromixer Using Injected Magnetic Mixture Underneath Microfluidic Channel

Author(s):  
Athira N. Surendran ◽  
Ran Zhou

Abstract Microfluidics has a lot of applications in fields ranging from pharmaceutical to energy, and one of the major applications is micromixers. A challenge faced by most micromixers is the difficulty in mixing within micro-size fluidic channels because of the domination of laminar flow in a small channel. Hence, magnetic field generated by permanent magnets and electromagnets have been widely used to mix ferrofluids with other sample fluids on a micro level. However, permanent magnets are bulky, and electromagnets produce harmful heat to biological samples; both properties are detrimental to a microfluidic chip’s performance. Taking these into consideration, this study proposes rapid mixing of ferrofluid using a two-layer microfluidic device with microfabricated magnet. Two microfluidic chips that consist of microchannels and micromagnets respectively are fabricated using a simple and low-cost soft lithography method. The custom-designed microscale magnet consists of an array of stripes and is bonded below the plane of the microchannel. The combination of the planar location and angle of the array of magnets allow the migration of ferrofluids, hence mixing it with buffer flow. Parametric studies are performed to ensure comprehensive understanding, including the angle of micro-scale magnets with respect to the fluidic channels, total flow rate and density of the array of magnets. The result from this study can be applied in chemical synthesis and pre-processing, sample dilution, or inducing reactions between samples and reagent.

2012 ◽  
Vol 548 ◽  
pp. 254-257 ◽  
Author(s):  
Yan He ◽  
Bai Ling Huang ◽  
Yong Lai Zhang ◽  
Li Gang Niu

In this paper, a simple and facile technique for manufacturing glass-based microfluidic chips was developed. Instead of using expensive dry etching technology, the standard UV lithography and wet chemical etching technique was used to fabricate microchannels on a K9 glass substrate. The fabrication process of microfluidic chip including vacuum evaporation, annealing, lithography, and BHF (HF-NH4F-H2O) wet etching were investigated. Through series experiments, we found that anneal was the critical factor for chip quality. As a representative example, a microfluidic channel with 20 m of depth, and 80 m of width was successfully prepared, and the channel surfaces are quite smooth. These results present a simple, low cost, flexible and easy way to fabricate glass-based microfluidic chips.


2021 ◽  
Author(s):  
Md. Fazlay Rubby ◽  
Varsha Namboodiri ◽  
Mohammad Salman Parvez ◽  
Nazmul Islam

Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 576 ◽  
Author(s):  
Edgar Jiménez-Díaz ◽  
Mariel Cano-Jorge ◽  
Diego Zamarrón-Hernández ◽  
Lucia Cabriales ◽  
Francisco Páez-Larios ◽  
...  

Microfluidics has become a very promising technology in recent years, due to its great potential to revolutionize life-science solutions. Generic microfabrication processes have been progressively made available to academic laboratories thanks to cost-effective soft-lithography techniques and enabled important progress in applications like lab-on-chip platforms using rapid- prototyping. However, micron-sized features are required in most designs, especially in biomimetic cell culture platforms, imposing elevated costs of production associated with lithography and limiting the use of such devices. In most cases, however, only a small portion of the structures require high-resolution and cost may be decreased. In this work, we present a replica-molding method separating the fabrication steps of low (macro) and high (micro) resolutions and then merging the two scales in a single chip. The method consists of fabricating the largest possible area in inexpensive macromolds using simple techniques such as plastics micromilling, laser microfabrication, or even by shrinking printed polystyrene sheets. The microfeatures were made on a separated mold or onto existing macromolds using photolithography or 2-photon lithography. By limiting the expensive area to the essential, the time and cost of fabrication can be reduced. Polydimethylsiloxane (PDMS) microfluidic chips were successfully fabricated from the constructed molds and tested to validate our micro–macro method.


2018 ◽  
Vol 5 (4) ◽  
pp. 172034 ◽  
Author(s):  
Yuanzi Wu ◽  
Ye Jiang ◽  
Xiaoshan Zheng ◽  
Shasha Jia ◽  
Zhi Zhu ◽  
...  

We describe a facile and low-cost approach for a flexibly integrated surface-enhanced Raman scattering (SERS) substrate in microfluidic chips. Briefly, a SERS substrate was fabricated by the electrostatic assembling of gold nanoparticles, and shaped into designed patterns by subsequent lift-up soft lithography. The SERS micro-pattern could be further integrated within microfluidic channels conveniently. The resulting microfluidic SERS chip allowed ultrasensitive in situ SERS monitoring from the transparent glass window. With its advantages in simplicity, functionality and cost-effectiveness, this method could be readily expanded into optical microfluidic fabrication for biochemical applications.


2017 ◽  
Vol 114 (40) ◽  
pp. 10590-10595 ◽  
Author(s):  
Wang Xi ◽  
Fang Kong ◽  
Joo Chuan Yeo ◽  
Longteng Yu ◽  
Surabhi Sonam ◽  
...  

Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1381-1389
Author(s):  
Dezhi Chen ◽  
Chengwu Diao ◽  
Zhiyu Feng ◽  
Shichong Zhang ◽  
Wenliang Zhao

In this paper, a novel dual-stator permanent magnet machine (DsPmSynM) with low cost and high torque density is designed. The winding part of the DsPmSynM adopts phase-group concentrated-coil windings, and the permanent magnets are arranged by spoke-type. Firstly, the winding structure reduces the amount of copper at the end of the winding. Secondly, the electromagnetic torque ripple of DsPmSynM is suppressed by reducing the cogging torque. Furthermore, the dynamic performance of DsPmSynM is studied. Finally, the experimental results are compared with the simulation results.


2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


2021 ◽  
Vol 59 (5) ◽  
pp. 345-347
Author(s):  
Daniel T. M. Fontes ◽  
André Machado Rodrigues

2018 ◽  
Vol 8 (8) ◽  
pp. 1275 ◽  
Author(s):  
Kai von Petersdorff-Campen ◽  
Yannick Hauswirth ◽  
Julia Carpenter ◽  
Andreas Hagmann ◽  
Stefan Boës ◽  
...  

Conventional magnet manufacturing is a significant bottleneck in the development processes of products that use magnets, because every design adaption requires production steps with long lead times. Additive manufacturing of magnetic components delivers the opportunity to shift to agile and test-driven development in early prototyping stages, as well as new possibilities for complex designs. In an effort to simplify integration of magnetic components, the current work presents a method to directly print polymer-bonded hard magnets of arbitrary shape into thermoplastic parts by fused deposition modeling. This method was applied to an early prototype design of a rotary blood pump with magnetic bearing and magnetic drive coupling. Thermoplastics were compounded with 56 vol.% isotropic NdFeB powder to manufacture printable filament. With a powder loading of 56 vol.%, remanences of 350 mT and adequate mechanical flexibility for robust processability were achieved. This compound allowed us to print a prototype of a turbodynamic pump with integrated magnets in the impeller and housing in one piece on a low-cost, end-user 3D printer. Then, the magnetic components in the printed pump were fully magnetized in a pulsed Bitter coil. The pump impeller is driven by magnetic coupling to non-printed permanent magnets rotated by a brushless DC motor, resulting in a flow rate of 3 L/min at 1000 rpm. For the first time, an application of combined multi-material and magnet printing by fused deposition modeling was shown. The presented process significantly simplifies the prototyping of products that use magnets, such as rotary blood pumps, and opens the door for more complex and innovative designs. It will also help postpone the shift to conventional manufacturing methods to later phases of the development process.


Sign in / Sign up

Export Citation Format

Share Document