Feasibility Investigation of the Decay Heat Removal Capability Using the Concept of a Thermosyphon in the Liquid Metal Reactor

Author(s):  
Yeon-Sik Kim ◽  
Yoon-Sub Sim ◽  
Eui-Kwang Kim

A new design concept for a decay heat removal system in a liquid metal reactor is proposed. The new design utilizes a thermosyphon to enhance the heat removal capacity and its heat transfer characteristics are analyzed against the current PSDRS (Passive Safety Decay heat Removal System) in the KALIMER (Korea Advanced LIquid MEtal Reactor) design. The preliminary analysis results show that the new design with a thermosyphon yields substantial increase of 20∼40% in the decay heat removal capacity compared to the current design that do not have the thermosyphon. The new design reduces the temperature rise in the cooling air of the system and helps the surrounding structure in maintaining its mechanical integrity for long term operation at an accident. Also the analysis revealed the characteristics of the interactions among various heat transfer modes in the new design.

Author(s):  
Dehee Kim ◽  
Jaehyuk Eoh ◽  
Tae-Ho Lee

Sodium-cooled Fast Reactor (SFR) is one of the generation IV (Gen-IV) nuclear reactors. Prototype Gen-IV SFR (PGSFR) is a SFR being developed in Korea Atomic Energy Research Institute (KAERI). Decay Heat Removal System (DHRS) in the PGSFR has a safety function to make shutdown the reactor under abnormal plant conditions. Single DHRS loop consists of sodium-to-sodium decay heat exchanger (DHX), helical-tube sodium-to-air heat exchanger (AHX) or finned-tube sodium-to-air heat exchanger (FHX), loop piping, and expansion vessel. The DHXs are located in the cold pool and the AHXs and FHXs are installed in the upper region of the reactor building. The DHRS loop is a closed loop and liquid sodium coolant circulates inside the loop by natural circulation head for passive system and by forced circulation head for active system. There are three independent heat transport paths in the DHRS, i.e., the DHX shell-side sodium flow path, the DHRS sodium loop path through the piping, the AHX shell-side air flow path. To design the components of the DHRS and to determine its configuration, key design parameters such as mass flow rates in each path, inlet/outlet temperatures of primary and secondary flow sides of each heat exchanger should be determined reflecting on the coupled heat transfer mechanism over the heat transfer paths. The number of design parameters is larger than that of the governing equations and optimization approach is required for compact design of the DHRS. Therefore, a genetic algorithm has been implemented to decide the optimal design point. The one-dimensional system design code which can predict heat transfer rates and pressure losses through the heat exchangers and piping calculates the objective function and the genetic algorithm code searches a global optimal point. In this paper, we present a design methodology of the DHRS, for which we have developed a system code coupling a one-dimensional system code with a genetic algorithm code. As a design result, the DHRS layouts and the sizing of the heat exchangers have been shown.


2021 ◽  
Vol 378 ◽  
pp. 111259
Author(s):  
A. Pantano ◽  
P. Gauthe ◽  
M. Errigo ◽  
P. Sciora

1978 ◽  
Author(s):  
J. E. Kelly ◽  
R. C. Erdmann

Author(s):  
Seong Kuk Cho ◽  
Jekyoung Lee ◽  
Jeong Ik Lee ◽  
Jae Eun Cha

A Sodium-cooled Fast Reactor (SFR) has receiving attention as one of the promising next generation nuclear reactors because it can recycle the spent nuclear fuel produced from the current commercial nuclear reactors and accomplish higher thermal efficiency than the current commercial nuclear reactors. However, after shutdown of the nuclear reactor core, the accumulated fission products of the SFR also decay and release heat via radiation within the reactor. To remove this residual heat, a decay heat removal system (DHRS) with supercritical CO2 (S-CO2) as the working fluid is suggested with a turbocharger system which achieves passive operational capability. However, for designing this system an improved S-CO2 turbine design methodology should be suggested because the existing methodology for designing the S-CO2 Brayton cycle has focused only on the compressor design near the critical point. To develop a S-CO2 turbine design methodology, the non-dimensional number based design and the 1D mean line design method were modified and suggested. The design methodology was implemented into the developed code and the code results were compared with existing turbine experimental data. The data were collected under air and S-CO2 environment. The developed code in this research showed a reasonable agreement with the experimental data. Finally using the design code, the turbocharger design for the suggested DHRS and prediction of the off design performance were carried out. As further works, more effort will be put it to expand the S-CO2 turbine test data for validating the design code and methodology.


2019 ◽  
Author(s):  
Susyadi ◽  
Andi S. Ekariansyah ◽  
Hendro Tjahjono ◽  
D. T. Sony Tjahyani

2016 ◽  
Vol 305 ◽  
pp. 168-178 ◽  
Author(s):  
Fabio Giannetti ◽  
Damiano Vitale Di Maio ◽  
Antonio Naviglio ◽  
Gianfranco Caruso

Author(s):  
Yang Liu ◽  
Haijun Jia ◽  
Li Weihua

Passive decay heat removal (PDHR) system is important to the safety of integral pressurized water reactor (IPWR). In small break LOCA sequence, the depressurization of the reactor pressure vessel (RPV) is achieved by the PDHR that remove the decay heat by condensing steam directly through the SGs inside the RPV at high pressure. The non-condensable gases in the RPV significantly weaken the heat transfer capability of PDHR. This paper focus on the non-condensable gas effects in passive decay heat removal system at high pressure. A series of experiments are conducted in the Institute of Nuclear and New Energy Technology test facility with various heating power and non-condensable gas volume ratio. The results are significant to the optimizing design of the PDHR and the safety operation of the IPWR.


2014 ◽  
Vol 280 ◽  
pp. 564-569 ◽  
Author(s):  
V. Vinod ◽  
S. Chandramouli ◽  
G. Padmakumar ◽  
B.K. Nashine ◽  
K.K. Rajan

Sign in / Sign up

Export Citation Format

Share Document