Studies of the deteriorated turbulent heat transfer regime for the gas-cooled fast reactor decay heat removal system

2007 ◽  
Vol 237 (10) ◽  
pp. 1033-1045 ◽  
Author(s):  
Jeong Ik Lee ◽  
Pavel Hejzlar ◽  
Pradip Saha ◽  
Mujid S. Kazimi
Author(s):  
Jeong Ik Lee ◽  
Pavel Hejzlar ◽  
Mujid S. Kazimi ◽  
Pradip Saha

Increased reliance on passive emergency cooling using natural circulation of gas at elevated pressure is one of the major goals for the Gas-cooled Fast Reactor (GFR). Since GFR cores have high power density and low thermal inertia, the decay heat removal (DHR) in depressurization accidents is a key challenge. Furthermore, due to its high surface heat flux and low velocities under natural circulation in any post-LOCA scenario, three effects impair the capability of turbulent gas flow to remove heat from the GFR core, namely: (1) Acceleration effect (2) Buoyancy effect (3) Properties variation. This paper reviews previous work on heat transfer mechanisms and flow characteristics of the Deteriorated Turbulent Heat Transfer (DTHT) regime. It is shown that the GFR’s DHR system has a potential for operating in the DTHT regime by performing a simple analysis. A description of the MIT/INL experimental facility designed and built to investigate the DTHT regime is provided together with the first test results. The first runs were performed in the forced convection regime to verify facility operation against well-established forced convection correlations. The results of the three runs at Reynolds numbers 6700, 8000 and 12800 showed good agreement with the Gnielinsky correlation [4], which is considered the best available heat transfer correlation in the forced convection regime and is valid for a large range of Reynolds and Prandtl numbers. However, even in the forced convection regime, the effect of heat transfer properties variation of the fluid was found to be still significant.


Author(s):  
Seong Kuk Cho ◽  
Jekyoung Lee ◽  
Jeong Ik Lee ◽  
Jae Eun Cha

A Sodium-cooled Fast Reactor (SFR) has receiving attention as one of the promising next generation nuclear reactors because it can recycle the spent nuclear fuel produced from the current commercial nuclear reactors and accomplish higher thermal efficiency than the current commercial nuclear reactors. However, after shutdown of the nuclear reactor core, the accumulated fission products of the SFR also decay and release heat via radiation within the reactor. To remove this residual heat, a decay heat removal system (DHRS) with supercritical CO2 (S-CO2) as the working fluid is suggested with a turbocharger system which achieves passive operational capability. However, for designing this system an improved S-CO2 turbine design methodology should be suggested because the existing methodology for designing the S-CO2 Brayton cycle has focused only on the compressor design near the critical point. To develop a S-CO2 turbine design methodology, the non-dimensional number based design and the 1D mean line design method were modified and suggested. The design methodology was implemented into the developed code and the code results were compared with existing turbine experimental data. The data were collected under air and S-CO2 environment. The developed code in this research showed a reasonable agreement with the experimental data. Finally using the design code, the turbocharger design for the suggested DHRS and prediction of the off design performance were carried out. As further works, more effort will be put it to expand the S-CO2 turbine test data for validating the design code and methodology.


Author(s):  
Yeon-Sik Kim ◽  
Yoon-Sub Sim ◽  
Eui-Kwang Kim

A new design concept for a decay heat removal system in a liquid metal reactor is proposed. The new design utilizes a thermosyphon to enhance the heat removal capacity and its heat transfer characteristics are analyzed against the current PSDRS (Passive Safety Decay heat Removal System) in the KALIMER (Korea Advanced LIquid MEtal Reactor) design. The preliminary analysis results show that the new design with a thermosyphon yields substantial increase of 20∼40% in the decay heat removal capacity compared to the current design that do not have the thermosyphon. The new design reduces the temperature rise in the cooling air of the system and helps the surrounding structure in maintaining its mechanical integrity for long term operation at an accident. Also the analysis revealed the characteristics of the interactions among various heat transfer modes in the new design.


2015 ◽  
Vol 52 (9) ◽  
pp. 1102-1121 ◽  
Author(s):  
Osamu Watanabe ◽  
Kazuhiro Oyama ◽  
Junji Endo ◽  
Norihiro Doda ◽  
Ayako Ono ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Jiarun Mao ◽  
Lei Song ◽  
Yuhao Liu ◽  
Jiming Lin ◽  
Shanfang Huang ◽  
...  

This paper presents capacity of the passive decay heat removal system (DHRS) operated under the natural circulation conditions to remove decay heat inside the main vessel of the Lead-bismuth eutectic cooled Fast Reactor (LFR). The motivation of this research is to improve the inherent safety of the LFR based on the China Accelerator Driven System (ADS) engineering project. Usually the plant is damaged due to the failure of the main pumps and the main heat exchangers under the Station Blackout (SBO). To prevent this accident, we proposed the DHRS based on the diathermic oil cooling for the LFR. The behavior of the DHRS and the plant was simulated using the CFD code STAR CCM+ using LFR with DHRS. The purpose of this analysis is to evaluate the heat exchange capacity of the DHRS and is to provide the reference for structural improvement and experimental design. The results show that the stable natural circulations are established in both the main vessel and the DHRS. During the decay process, the heat exchange power is above the core decay heat power. In addition, in-core decay heat and heat storage inside the main vessel are efficiently removed. All the thermal-hydraulics parameters are within a safe range. Moreover, the highest temperature occurs at the upper surface of the core. A swirl occurs at the corner of the lateral core surface and some improvements should be considered. And the natural circulation driving force can be further increased by reducing the loop resistance or increasing the natural circulation height based on the present design scenario to enhance the heat exchange effect.


2016 ◽  
Vol 53 (9) ◽  
pp. 1385-1396 ◽  
Author(s):  
Ayako Ono ◽  
Hideki Kamide ◽  
Jun Kobayashi ◽  
Norihiro Doda ◽  
Osamu Watanabe

Sign in / Sign up

Export Citation Format

Share Document