Scoping Studies for a Small Modular Lead-Cooled Fast Reactor

Author(s):  
Chenggang Yu ◽  
Michael A. Smith ◽  
Earl E. Feldman ◽  
Won Sik Yang ◽  
James J. Sienicki

A scoping design study has been carried out of the feasibility of a small, 25 MWt (∼10 MWe), modular lead-cooled fast reactor coupled to an advanced power converter consisting of a gas turbine Brayton cycle that utilizes supercritical carbon dioxide as the working fluid. Major constraints of the study are an ultralong 20 year core lifetime, near zero reactivity burnup swing over the core lifetime, Pb primary coolant natural circulation heat transport, road transportability of plant modular assemblies including the reactor and guard vessels, and high Brayton cycle power conversion efficiency. It is found that the goal of a near zero reactivity burnup swing implies a low core power density that results in an unacceptably low discharge burnup.

Author(s):  
Anton V. Moisseytsev ◽  
James J. Sienicki ◽  
David C. Wade

Recent development of the Secure Transportable Autonomous Reactor-Liquid Metal (STAR-LM) lead-cooled natural circulation fast reactor (LFR) has been directed at coupling to an advanced power conversion system that utilizes a gas turbine Brayton cycle with supercritical carbon dioxide (S-CO2) as the working fluid. A key ingredient in achieving a coupled plant having a high efficiency are the modular lead-to-CO2 heat exchangers that must fit within the available volume inside the reactor vessel and must heat the S-CO2 to a high temperature. Thermal hydraulic performance and feasibility of seven different heat exchanger concepts has been investigated with respect to the achievement of a suitably high Brayton cycle efficiency for the coupled LFR-S-CO2 plant. The relative merits of the different heat exchanger configurations are revealed by the analysis which provides a basis to select the most promising concepts for further development.


Author(s):  
James J. Sienicki ◽  
Anton Moisseytsev ◽  
Lubomir Krajtl

Although a number of power conversion applications have been identified or have even been developed (e.g., waste heat recovery) for supercritical carbon dioxide (S-CO2) cycles including fossil fuel combustors, concentrated solar power (i.e., solar power towers), and marine propulsion, the benefits of S-CO2 Brayton cycle power conversion are especially prominent for applications to nuclear power reactors. In particular, the S-CO2 Brayton cycle is well matched to the Sodium-Cooled Fast Reactor (SFR) nuclear power reactor system and offers significant benefits for SFRs. The recompression closed Brayton cycle is highly recuperated and wants to operate with an approximate optimal S-CO2 temperature rise in the sodium-to-CO2 heat exchangers of about 150 °C which is well matched to the sodium temperature rise through the core that is also about 150 °C. Use of the S-CO2 Brayton cycle eliminates sodium-water reactions and can reduce the nuclear power plant cost per unit electrical power. A conceptual design of an optimized S-CO2 Brayton cycle power converter and supporting systems has been developed for the Advanced Fast Reactor – 100 (AFR-100) 100 MWe-class (250 MWt) SFR Small Modular Reactor (SMR). The AFR-100 is under ongoing development at Argonne National Laboratory (ANL) to target emerging markets where a clean, secure, and stable source of electricity is required but a large-scale power plant cannot be accommodated. The S-CO2 Brayton cycle components and cycle conditions were optimized to minimize the power plant cost per unit electrical power (i.e., $/kWe). For a core outlet temperature of 550 °C and turbine inlet temperature of 517 °C, a cycle efficiency of 42.3 % is calculated that exceeds that obtained with a traditional superheated steam cycle by one percentage point or more. A normal shutdown heat removal system incorporating a pressurized pumped S-CO2 loop slightly above the critical pressure on each of the two intermediate sodium loops has been developed to remove heat from the reactor when the power converter is shut down. Three-dimensional layouts of S-CO2 Brayton cycle power converter and shutdown heat removal components and piping have been determined and three-dimensional CAD drawings prepared. The S-CO2 Brayton cycle power converter is found to have a small footprint reducing the space requirements for components and systems inside of both the turbine generator building and reactor building. The results continue to validate earlier notions about the benefits of S-CO2 Brayton cycle power conversion for SFRs including higher efficiency, improved economics, elimination of sodium-water reactions, load following, and smaller footprint.


Author(s):  
Tom G. Lewis ◽  
Edward J. Parma ◽  
Steven A. Wright ◽  
Milton E. Vernon ◽  
Darryn D. Fleming ◽  
...  

The advanced nuclear concept group at Sandia National Laboratories has been investigating two advance right size reactors (RSR); this paper will discuss one of these two systems. The supercritical carbon dioxide (S-CO2), direct cycle gas fast reactor (SC-GFR) concept was developed to determine the feasibility of a RSR type concept using S-CO2 as the working fluid in a direct cycle fast reactor. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this paper show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The SC-GFR concept is a relatively small (200 MWth) fast reactor that is cooled with CO2 at a pressure of 20 MPa. The CO2 flows out of the reactor vessel at ∼650°C directly into a turbine-generator unit to produce electrical power. The thermodynamic cycle that is used for the power conversion is a supercritical gas Brayton cycle with CO2 as the working fluid. With the CO2 gas near the critical point after the heat rejection portion of the cycle, it can be compressed with less power as compared to a standard gas Brayton cycle, thereby allowing for a higher thermal efficiency at the same turbine inlet temperature. A cycle efficiency of 45–50% is theoretically achievable for an optimized configuration. The major advantages of the concept include the following: • High thermal efficiency at relatively low reactor outlet temperatures; • Compact, cost-effective, power conversion system; • Non-flammable, stable, inert, non-toxic, inexpensive, and well-characterized coolant; • Potential long-life core and closed fuel cycle; • Small void reactivity worth from loss of coolant; • Natural convection decay heat removal; • Feasible design using today’s technologies. The goal of this work was to develop a SC-GFR concept and perform scoping analyses, including a review of other concepts that are similar in nature, to determine concept feasibility, advantages, disadvantages, and issues requiring further investigation. Overall, the SC-GFR concept as described in this paper appears feasible and warrants further study.


Author(s):  
R. G. Adams ◽  
F. H. Boenig

The Gas Turbine HTGR, or “Direct Cycle” High-Temperature Gas-Cooled, Reactor power plant, uses a closed-cycle gas turbine directly in the primary coolant circuit of a helium-cooled high-temperature nuclear reactor. Previous papers have described configuration studies leading to the selection of reactor and power conversion loop layout, and the considerations affecting the design of the components of the power conversion loop. This paper discusses briefly the effects of the helium working fluid and the reactor cooling loop environment on the design requirements of the direct-cycle turbomachinery and describes the mechanical arrangement of a typical turbomachine for this application. The aerodynamic design is outlined, and the mechanical design is described in some detail, with particular emphasis on the bearings and seals for the turbomachine.


Author(s):  
Chengjie Duan ◽  
Xiaoyong Yang ◽  
Jie Wang ◽  
Suyuan Yu

At present, power cycles used in HTGR are indirect steam Rankine cycle and helium Brayton cycle. Using water or helium as working fluid which transform thermal energy into mechanical energy for HTGR power cycle has many disadvantages. Steam cycle could choose steam system which is similar to conventional coal-fired power plant, but because of the limit of material and equipments, there is big temperature difference between the steam and the helium, that makes big loss of thermal power and lowers the cycle efficiency. Helium can reach a high temperature in HTGR Brayton cycle and it has good stability, but because of helium has big isentropic exponent and low density, it is difficult to compress and makes helium turbine has shorter blades and more stages than normal gas turbine. Carbon dioxide has good thermal stability and physical properties. To avoid the reaction of CO2 with graphite and canning of fuel element at high temperature, it should be used in an indirect cycle as second loop working fluid. CO2 has appropriate critical pressure and temperature (7.38MPa, 304.19K) and can choose three types of cycle: supercritical cycle, subcritical-pressure cycle and trans-critical-pressure cycle (CO2 sometimes works under supercritical pressure, some times under subcritical-pressure). Carbon dioxide cycle works in a high pressure, so it makes pressure loss lower. When CO2 works close to its critical point, its density become larger than other conditions, and not change very much, this permits to reduce compress work. The thermal physical properties of carbon dioxide are totally different from helium due to CO2 works as real gas in the cycle. That causes the calculation of CO2 thermal physical properties, heat transfer and power cycle efficiency become difficult and need to be iterated. A systematic comparison between helium and carbon dioxide as working fluid for HTGR has been carried out. An empirical equation had been selected to estimate the thermal physical properties of carbon dioxide. Three types of carbon dioxide power cycle have been analyzed and the thermal efficiency has been calculated. A detailed introduction to the basic calculation process of the CO2 cycle thermal efficiency had been presented in the paper.


Author(s):  
John J. Dyreby ◽  
Sanford A. Klein ◽  
Gregory F. Nellis ◽  
Douglas T. Reindl

Continuing efforts to increase the efficiency of utility-scale electricity generation has resulted in considerable interest in Brayton cycles operating with supercritical carbon dioxide (S-CO2). One of the advantages of S-CO2 Brayton cycles, compared to the more traditional steam Rankine cycle, is that equal or greater thermal efficiencies can be realized using significantly smaller turbomachinery. Another advantage is that heat rejection is not limited by the saturation temperature of the working fluid, facilitating dry cooling of the cycle (i.e., the use of ambient air as the sole heat rejection medium). While dry cooling is especially advantageous for power generation in arid climates, the reduction in water consumption at any location is of growing interest due to likely tighter environmental regulations being enacted in the future. Daily and seasonal weather variations coupled with electric load variations means the plant will operate away from its design point the majority of the year. Models capable of predicting the off-design and part-load performance of S-CO2 power cycles are necessary for evaluating cycle configurations and turbomachinery designs. This paper presents a flexible modeling methodology capable of predicting the steady state performance of various S-CO2 cycle configurations for both design and off-design ambient conditions, including part-load plant operation. The models assume supercritical CO2 as the working fluid for both a simple recuperated Brayton cycle and a more complex recompression Brayton cycle.


Author(s):  
Bogdán Yamaji ◽  
Attila Aszódi

Based on the MSFR (Molten Salt Fast Reactor) reactor concept proposed within the framework of the EVOL (Evaluation and Viability of Liquid Fuel Fast Reactor System, EU FP7) international research project a scaled and segmented experimental model of the MSFR and first measurement result will be presented in the paper. MSFR is a single region, homogeneous liquid fuelled fast reactor concept. The reactor uses fluoride-based molten salts as fuel and coolant, with fissile uranium and/or thorium and other heavy nuclei content with the purpose of applying the thorium cycle and the burn-up of transuranic elements. The concept has a single region cylindrical core with sixteen radial inlet and outlet nozzles located at the bottom and top of the core. The external circuit (internal heat exchanger, pump, pipes) is broken up in sixteen identical modules distributed around the core. A scaled and segmented experimental model of the MSFR concept was designed and built in order to carry out Particle Image Velocimetry (PIV) measurements. Purpose of the experimental mock-up is to provide measurement data for validation and benchmarking of CFD simulations, and also to study specific problems or phenomena related to the MSFR, such as design of inlet geometry, effects of internal structures, coolant mixing. The experimental model uses water as working fluid with 50 μm polyamide seeding particles added for PIV measurement. Geometrical scaling was applied in order to reduce size and necessary pumping power and the geometry represents a 90 degree segment of the original cylindrical geometry. It was not possible to maintain the nominal value of the Reynolds-number (∼1E+06 for the core) however a highly turbulent flow (Re>1E+05) can be reproduced in the system. Final design of the scaled and segmented plexiglas model will be presented, capabilities and limitations of the measurement assembly will be discussed together with the presentation of first measurements results.


Author(s):  
Jian Song ◽  
Limin Liu ◽  
Simiao Tang ◽  
Yingwei Wu ◽  
Wenxi Tian ◽  
...  

Due to great deal of operation experience and technology accumulation, sodium cooled fast reactor (SFR) is the most promising among the six Generation IV reactors, which has advantages of breeding nuclear fuel, transmuting long-lived actinides and good safety characteristics. Thermal-hydraulic computer codes will have to be developed, verified, and validated to support the conceptual and final designs of new SFRs. However, work on developing thermal hydraulic analysis code for SFR is very limited in China, while the common software RELAP5 MOD3 is unable to analyze liquid metal systems. So the modified RELAP5 MOD3.2 is being considered as the thermal-hydraulic system code to support the development of the SFRs. The thermodynamic and transport properties of sodium liquid and vapor have been implemented into the RELAP5 MOD3.2 code, as well as the specific heat transfer correlations for liquid metal. The sodium liquid properties use polynomial equations based on data obtained from Argonne National Laboratory, and the vapor is assumed to be perfect gas. The property equations are acceptably accurate for analysis of SFR, especially for single-phase liquid. New files are added to the fluids directory to generate property tables for new working fluid, which are similar to the table interpolation subroutines for light and heavy water in the original file directory. The method of code modifications are universal for other working fluids and will not affect the code original performance. Some basic verification work for the modified code are carried out. The steam generator of CEFR is analyzed to verify the modified code. The calculated results show that all the water will boil off in the evaporator and the calculated results are in good agreement with the design values. By using modified RELAP5 to model the primary loop of EBR-II fast reactor, the SHRT-17 PLOF test was analyzed. The results show that the natural circulation can be established in the EBR-II primary system after main pumps off to remove the core decay residual heat effectively, and the peak temperature under the safety limits. Moreover, the results computed in this work compared well with the test experimental data for the steady state condition. During the transients, the changing trends of temperature and pressure are similar to experimental data. The discrepancies between calculation and experiment are considered acceptably which need to be improved in the future work. Our work could demonstrate the capability and reliability of the modified RELAP5 for the analysis of SFRs further.


Author(s):  
Jin Young Heo ◽  
Jinsu Kwon ◽  
Jeong Ik Lee

For the concentrating solar power (CSP) applications, the supercritical carbon dioxide (s-CO2) power cycle is beneficial in many aspects, including high cycle efficiencies, reduced component sizing, and potential for the dry cooling option. More research is involved in improving this technology to realize the s-CO2 cycle as a candidate to replace the conventional power conversion systems for CSP applications. In this study, an isothermal compressor, a turbomachine which undergoes the compression process at constant temperature to minimize compression work, is applied to the s-CO2 power cycle layout. To investigate the cycle performance changes of adopting the novel technology, a framework for defining the efficiency of the isothermal compressor is revised and suggested. This study demonstrates how the compression work for the isothermal compressor is reduced, up to 50%, compared to that of the conventional compressor under varying compressor inlet conditions. Furthermore, the simple recuperated and recompression Brayton cycle layouts using s-CO2 as a working fluid are evaluated for the CSP applications. Results show that for compressor inlet temperatures (CIT) near the critical point, the recompression Brayton cycle using an isothermal compressor has 0.2–1.0% point higher cycle thermal efficiency compared to its reference cycle. For higher CIT values, the recompression cycle using an isothermal compressor can perform above 50% in thermal efficiency for a wider range of CIT than the reference cycle. Adopting an isothermal compressor in the s-CO2 layout can imply larger heat exchange area for the compressor which requires further development.


Sign in / Sign up

Export Citation Format

Share Document