Analysis of Steam Blocking in a Low Pressure Heating System

Author(s):  
Jinbo Chen ◽  
Haiguang Gong ◽  
Lili Tong

An analytic investigation of the steam blocking in low pressure heating channels was conducted. In this paper, the dynamic model of the vapor-liquid interface is established through the basic conservation equations, and the rupture time of the vapor-liquid interface is predicted based on the Rayleigh-Taylor instability. Subsequently, the steam blocking model considering the steam accumulation and the vapor-liquid interface rupture in geysering flow is established. On these bases, the relative volume and relative pressure of the accumulated steam, the relative acceleration and perturbation intensity of the vapor-liquid interface, the time-varying behavior of the ratio of resistance and buoyancy are obtained. It is found that the accumulated steam basically increases linearly with the time going; The oscillation of the pressure and velocity, which is very large at the beginning time of the steam accumulation, decreases gradually with the continuous steam accumulation; The Reynolds number of the liquid within the rising section is very small at the stagnation state since there is no forced circulation flow, and finally a blockage is engendered in the pipeline with the steam accumulated. The theoretical results are in good agreements with the results obtained by a small-scale experiment. The mechanism model is able to predict the steam blocking property during the geysering flow in heating channels well, and can also establish a theoretical basis for the later analysis of the steam blocking elimination.

2020 ◽  
pp. 140-148
Author(s):  
Md. Kumail Naqvi ◽  
Mrinal Anthwal ◽  
Ravindra Kumar

Biogas is the product of anaerobic vitiation of biodegradable matter. This paper focuses on the need of alternative and green sources of energy at a household level and how biogas produced from the everyday organic waste has the potential and possibility to replace LPG cylinders at houses, shops etc. and empower us to step towards an eco-friendly future. The purpose this small-scale experiment has been to find the perfect input matter that is easy to acquire and which produces the maximum amount of gas from minimum input and within small period of waste retention. Four different types of input waste material containing different quantities of cow dung and kitchen food waste were studied through individual experimental setups. Waste was mixed and kept at room temperature and the pH and total solid concentration of the samples were recorded on regular intervals. From the experiment it was found that the optimum yield of biogas at a small scale, based on the parameters such as retention period, pH and total solid con-centration can be obtained by the use of food waste form households and kitchens. The exact composition has been discussed in this paper. The energy generated by the small-scale generator has also been compared to that of an LPG cylinder and an LPG replacement model has also been presented.


2020 ◽  
Vol 11 (1) ◽  
pp. 1-21
Author(s):  
Bastiaan Bruinsma

AbstractWhile the design of voting advice applications (VAAs) is witnessing an increasing amount of attention, one aspect has until now been overlooked: its visualisations. This is remarkable, as it are those visualisations that communicate to the user the advice of the VAA. Therefore, this article aims to provide a first look at which visualisations VAAs adopt, why they adopt them, and how users comprehend them. For this, I will look at how design choices, specifically those on matching, influence the type of visualisation VAAs not only do but also have to, use. Second, I will report the results of a small-scale experiment that looked if all users comprehend similar visualisations in the same way. Here, I find that this is often not the case and that the interpretations of the users often differ. These first results suggest that VAA visualisations are wrongly underappreciated and demand closer attention of VAA designers.


2018 ◽  
Vol 149 ◽  
pp. 549-554 ◽  
Author(s):  
Ieva Pakere ◽  
Francesco Romagnoli ◽  
Dagnija Blumberga

Author(s):  
Jeffery P. Bindon

The pressure distribution in the tip clearance region of a 2D turbine cascade was examined with reference to unknown factors which cause high heat transfer rates and burnout along the edge of the pressure surface of unshrouded cooled axial turbines. Using a special micro-tapping technique, the pressure along a very narrow strip of the blade edge was found to be 2.8 times lower than the cascade outlet pressure. This low pressure, coupled with a thin boundary layer due to the intense acceleration at gap entry, are believed to cause blade burnout. The flow phenomena causing the low pressure are of very small scale and do not appear to have been previously reported. The ultra low pressure is primarily caused by the sharp flow curvature demanded of the leakage flow at gap entry. The curvature is made more severe by the apparent attachement of the flow around the corner instead of immediately separating to increase the radius demanded of the flow. The low pressures are intensified by a depression in the suction corner and by the formation of a separation bubble in the clearance gap. The bubble creates a venturi action. The suction corner depression is due to the mainstream flow moving round the leakage and secondary vortices.


1997 ◽  
Vol 40 (8) ◽  
pp. 663-671 ◽  
Author(s):  
N. V. Vvedenskii ◽  
N. K. Vdovicheva ◽  
V. B. Gil’denburg ◽  
N. A. Zharova ◽  
I. A. Shereshevskii ◽  
...  

1991 ◽  
Vol 36 (3) ◽  
pp. 340-342 ◽  
Author(s):  
Thomas Meyer ◽  
Hans Martin Polka ◽  
Juergen Gmehling

2011 ◽  
Vol 56 (9) ◽  
pp. 3510-3517 ◽  
Author(s):  
Mark T. G. Jongmans ◽  
Jenny I. W. Maassen ◽  
Adriaan J. Luijks ◽  
Boelo Schuur ◽  
André B. de Haan

Sign in / Sign up

Export Citation Format

Share Document