The Graphite Particle Movement in Fuel Handing System Bend Pipe in the High Temperature Gas-Cooled Reactor

Author(s):  
Jinyi Zhang ◽  
Hanliang Bo ◽  
Wenping Hu

A typical bend pipe in the fuel transporting and refueling system in the HTR is studied. The helium three-dimension flow field in the bend pipe is simulated and the graphite dust particle movement and impingement in the helium flow field are researched by numerical simulation. The trajectories of graphite particles with different diameters and different initial positions are simulated. The position and probability of the graphite particle collision is studied by the numerical simulation on the particle movement.

2011 ◽  
Vol 480-481 ◽  
pp. 810-814
Author(s):  
Jian Jun Song ◽  
Xiao Ping Du ◽  
Ji Guang Zhao ◽  
Jing Peng Chen ◽  
Qiao Wang ◽  
...  

The launch site security issues have been became the focus of the world’s research for several decades. Aiming at the filling system, the pipe vibration caused by the liquid hydrogen which flowed through the bend pipe was studied. And based on the computational fluid dynamics, the flow field was simulated according to the numerical simulation method. Then, the changes of flow parameters i.e. pressure and velocity at the bend were observed. The simulation results showed that: (1) the speed and the pressure of the liquid hydrogen would have a sudden change which was caused by flow direction and it would create a vortex which could erode the pipe and lead to the pipe vibration in the region. As a result, the pipe would deteriorate caused by the vortex. (2) the flow field analysis using the numerical simulation method was feasible. And the method provided a flow field distribution directly and design basis for filling system pipes.


2012 ◽  
Vol 184-185 ◽  
pp. 341-347
Author(s):  
Cai Jin Wu ◽  
Zheng Fei Ma ◽  
Yong Yang

The three-dimension flow field and the separation efficiency of the inclined cut-in double-inlet cyclone were simulated numerically with Reynolds Stress Model (RSM). Numerical results show that the flow field nonsymmetry is improved in the inclined cut-in double-inlet cyclone and the swirl in the flow field was decreased greatly compared to that in the single-inlet cyclone. With the increase of inclined angle, both the tangential velocity and the axial velocity first increase and then decrease, reaching a peak at inclined 12 ° angle and at inclined 10 ° angle, respectively. The pressure drop in the inclined cut-in double-inlet cyclone increases first and then decreases with the increase of inclined angle, reaching a maximum far lower than that in the single-inlet cyclone, while the change of the radial velocity is not obvious. The separation efficiency of the inclined cut-in double-inlet cyclone could be effectively improved and the optimum inclined angle is 10 °.


2020 ◽  
Vol 1670 ◽  
pp. 012030
Author(s):  
Shiming Chen ◽  
GuichunYang ◽  
Shuang Zhou ◽  
Wenzhuo Chen ◽  
Jinfa Guan ◽  
...  

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


2013 ◽  
Vol 791-793 ◽  
pp. 550-553 ◽  
Author(s):  
Dong Dong Han ◽  
Cheng Jun Wang ◽  
Juan Chang ◽  
Lei Chen ◽  
Huai Bei Xie

At present, pulley produced in China has been able to meet the demand of domestic and international markets. But there are many problem of the pulley industry in our country, such as too many production enterprises and the low level of export products. And as components of drive system are light weight and raw material price of pulley casting are rising, manufacturing requirements of the pulley are also more and more high. Aiming at the casting defects of pulley that enterprise current product, pulley casting blank model of common material HT250 be made by three-dimension software, numerical simulation of filling and solidification process for pulley sand casting by the casting simulation software Procast, the size and location of the various casting defects were forecasted and analyzed, reflecting the pulley filling and solidification process of the actual situation, due to the thicker pulley rim and less heat dissipation, position of shrinkage is close to the middle of rim [, a method of eliminating defects is proposed to realize sequential solidification, and thus to minimize porosity shrinkage and improve casting performance and reduce casting time and reduce production costs.


Sign in / Sign up

Export Citation Format

Share Document