Experimental Research and DEM Simulations on Stagnant Region in Pebble Bed Reactor

Author(s):  
Yu Li ◽  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
Shengyao Jiang

In pebble bed reactor, pebbles flow very slowly in the stagnant region, which is defined according to the burn-up level of fuel pebbles. It is not allowed to exist in real reactor, since the stay time of fuel pebbles in these regions goes beyond the burn-up level, which increases the risk of leakage of radiation. This research shows that the stagnant region is related to the geometric parameters of the core and the physical properties of pebbles. Experimental setup has been designed to observe the phenomenon of stagnant region, and analysis based on a phenomenological method has been carried out. The phenomenological method is an approach to study the dense pebble flow by means of investigating the interface features of different areas composed of differently colored pebbles. In addition, additional simulations by the DEM model are in good agreement with the experimental results, which successfully verify the availability of the discrete element method. On the basis of these researches, several key parameters have been investigated through DEM simulations, including height of the experimental setup, friction coefficient between pebbles and base cone angle. It is proved that, the stagnant region existing in the pebble bed can be eliminated by improving the design of pebble bed and the physical properties of fuel pebbles. All of these are very helpful to guide the design of pebble-bed reactor.

Author(s):  
Xiang Zhao ◽  
Trent Montgomery ◽  
Sijun Zhang

This paper presents combined computational fluid dynamics (CFD) and discrete element method (DEM) simulations of fluid flow and relevant heat transfer in the pebble bed reactor core. In the pebble bed reactor core, the coolant passes highly complicated flow channels, which are formed by thousands of pebbles in a random way. The random packing structure of pebbles is crucial to CFD simulations results. The realistic packing structure in an entire pebble bed reactor (PBR) is generated by discrete element method (DEM). While in CFD calculations, selection of the turbulence models have great importance in accuracy and capturing the details of the flow features, in our numerical simulations both large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) models are employed to investigate the effects of different turbulence models on gas flow field and relevant heat transfer. The calculations indicate the complex flow structure within the voids between the pebbles.


1972 ◽  
Vol 47 (1) ◽  
pp. 132-139 ◽  
Author(s):  
U. Hansen ◽  
R. Schulten ◽  
E. Teuchert

Kerntechnik ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. 643-647 ◽  
Author(s):  
T. Setiadipura ◽  
D. Irwanto ◽  
Zuhair

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4008
Author(s):  
Błażej Doroszuk ◽  
Robert Król ◽  
Jarosław Wajs

This paper addresses the problem of conveyor transfer station design in harsh operating conditions, aiming to identify and eliminate a failure phenomenon which interrupts aggregate supply. The analyzed transfer station is located in a Polish granite quarry. The study employs laser scanning and reverse engineering methods to map the existing transfer station and its geometry. Next, a discrete element method (DEM) model of granite aggregate has been created and used for simulating current operating conditions. The arch formation has been identified as the main reason for breakdowns. Alternative design solutions for transfer stations were tested in DEM simulations. The most uncomplicated design for manufacturing incorporated an impact plate, and a straight chute has been selected as the best solution. The study also involved identifying areas of the new station most exposed to wear phenomena. A new transfer point was implemented in the quarry and resolved the problem of blockages.


2014 ◽  
Vol 270 ◽  
pp. 295-301 ◽  
Author(s):  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
Shengyao Jiang

Author(s):  
Rainer Moormann

The AVR pebble bed reactor (46 MWth) was operated 1967–1988 at coolant outlet temperatures up to 990°C. Also because of a lack of other experience the AVR operation is a basis for future HTRs. This paper deals with insufficiently published unresolved safety problems of AVR and of pebble bed HTRs. The AVR primary circuit is heavily contaminated with dust bound and mobile metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory. A re-evaluation of the AVR contamination is performed in order to quantify consequences for future HTRs: The AVR contamination was mainly caused by inadmissible high core temperatures, and not — as presumed in the past — by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot be equipped with instruments. The maximum core temperatures were more than 200 K higher than precalculated. Further, azimuthal temperature differences at the active core margin were observed, as unpredictable hot gas currents with temperatures > 1100°C. Despite of remarkable effort these problems are not yet understood. Having the black box character of the AVR core in mind it remains uncertain whether convincing explanations can be found without major experimental R&D. After detection of the inadmissible core temperatures, the AVR hot gas temperatures were strongly reduced for safety reasons. Metallic fission products diffuse in fuel kernel, coatings and graphite and their break through takes place in long term normal operation, if fission product specific temperature limits are exceeded. This is an unresolved weak point of HTRs in contrast to other reactors and is particularly problematic in pebble bed systems with their large dust content. Another disadvantage, responsible for the pronounced AVR contamination, lies in the fact that activity released from fuel elements is distributed in HTRs all over the coolant circuit surfaces and on graphitic dust and accumulates there. Consequences of AVR experience on future reactors are discussed. As long as pebble bed intrinsic reasons for the high AVR temperatures cannot be excluded they have to be conservatively considered in operation and design basis accidents. For an HTR of 400 MWth, 900°C hot gas temperature, modern fuel and 32 fpy the contaminations are expected to approach at least the same order as in AVR end of life. This creates major problems in design basis accidents, for maintenance and dismantling. Application of German dose criteria on advanced pebble bed reactors leads to the conclusion that a pebble bed HTR needs a gas tight containment even if inadmissible high temperatures as observed in AVR are not considered. However, a gas tight containment does not diminish the consequences of the primary circuit contamination on maintenance and dismantling. Thus complementary measures are discussed. A reduction of demands on future reactors (hot gas temperatures, fuel burn-up) is one option; another one is an elaborate R&D program for solution of unresolved problems related to operation and design basis accidents. These problems are listed in the paper.


2013 ◽  
Vol 05 (04) ◽  
pp. 510-516
Author(s):  
Hongbing Liu ◽  
Peng Shen ◽  
Dong Du ◽  
Xin Wang ◽  
Haiquan Zhang

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Kumaran Kannaiyan ◽  
Kanjirakat Anoop ◽  
Reza Sadr

The influence of nanoparticles' dispersion on the physical properties of aviation fuel and its spray performance has been investigated in this work. To this end, the conventional Jet A-1 aviation fuel and its mixtures with alumina nanoparticles (nanofuel) at different weight concentrations are investigated. The key fuel physical properties such as density, viscosity, and surface tension that are of importance to the fuel atomization process are measured for the base fuel and nanofuels. The macroscopic spray features like spray cone angle and sheet breakup length are determined using the shadowgraph technique. The microscopic spray characteristics such as droplet diameter, droplet velocity, and their distributions are also measured by employing phase Doppler anemometry (PDA) technique. The spray performance is measured at two nozzle injection pressures of 0.3 and 0.9 MPa. The results show that with the increase in nanoparticle concentrations in the base fuel, the fuel viscosity and density increase, whereas the surface tension decreases. On the spray performance, the liquid sheet breakup length decreases with increasing nanoparticle concentrations. Furthermore, the mean droplet diameters of nanofuel are found to be lower than those of the base fuel.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Jingyu Zhang ◽  
Fu Li ◽  
Yuliang Sun

The pebble-bed reactor HTR-PM is being built in China and is planned to be critical in one or two years. At present, one emphasis of engineering design is to determine the fuel management scheme of the initial core and running-in phase. There are many possible schemes, and many factors need to be considered in the process of scheme evaluation and analysis. Based on the experience from the constructed or designed pebble-bed reactors, the fuel enrichment and the ratio of fuel spheres to graphite spheres are important. In this paper, some relevant physical considerations of the initial core and running-in phase of HTR-PM are given. Then a typical scheme of the initial core and running-in phase is proposed and simulated with VSOP code, and some key physical parameters, such as the maximum power per fuel sphere, the maximum fuel temperature, the refueling rate, and the discharge burnup, are calculated. Results of the physical parameters all satisfy the relevant design requirements, which means the proposed scheme is safe and reliable and can provide support for the fuel management of HTR-PM in the future.


Sign in / Sign up

Export Citation Format

Share Document