Study on the Behaviors of a Conceptual Passive Containment Cooling System

Author(s):  
Jianjun Wang ◽  
Beibei Luo ◽  
Xueqing Guo ◽  
Zhongning Sun

In this paper, a closed loop concept, which is composed of two heat exchangers with same scale, pipes, valves and one tank, has been developed as a passive containment cooling system for a large dry concrete containment. The system is designed to maintain the containment integrity by taking the heat drained into the containment following a severe accident, e.g. LOCA or MSLB. Under different conditions in containment, the system may operate in single phase mode or two phase mode. According to the design limitation of containment, the fixed temperature boundary condition is applied to the system analysis. We have developed the codes for the analysis of the system by ourselves. The operating behaviors of the system are studied numerically from startup to long term operation. In the light of the fact that the fraction of steam in the containment may be changing during the accident scenario, it is reasonable that the heat transfer coefficient will be different. Therefore, the sensitivity analysis of the heat transfer coefficient is also performed. Based on the results and corresponding analysis, it can be concluded that the system may be utilized to meet the design purpose for the containment integrity requirement.

Author(s):  
V. V. Dudarev ◽  
S. O. Filatаu ◽  
T. B. Karlovich

The article focuses on a new method of calculating heat transfer coefficient of bimetallic finned tubes of air coolers taking into account external operational pollution. In contrast to wellknown methods that use the assumption of a uniform distribution of operational contamination layer with a constant thickness over the entire surface of the fins in the present method being introduced it is assumed that the thickness of the pollution layer during long-term operation is changed irregularly. Under such conditions the thickness of the pollution layer at the base of the fins becomes much greater than at the rest of the finned surface. The suggested method is based on a mathematical model developed with the use of the method of electrothermal analogy, whereby the heat flow through the wall of the finned tube is considered as divided into two components, viz. through the annular layer of outside contamination adjacent to the base of the ribs, and through the remaining part of the external ribbed surface covered with a thin layer of pollution. Within the framework of the developed methodology a new method for determining the thermal resistance of the pollution layer, which is based on analytical solution of two dimensional problem of heat conduction in the annular layer has been created. With the use of this technique the influence of the degree of contamination of the intercostal space of the industrially manufactured bimetallic finned tubes on the heat transfer coefficient has been studied taking into account the intensity of heat transfer of air and the properties and composition of the pollutant for industrial manufactured bimetallic finned tubes. It is established that a layer thickness of the pollutant at the base of the ribs has the greatest influence on the heat transfer coefficient. This is due primarily to the change of actual coefficient of the fins. It is demonstrated that the heat conductivity of the external pollutant has a significant impact on the heat transfer coefficient when the heat exchanger functions in the mode of forced convection of air.


2008 ◽  
Author(s):  
Bolaji O. Olayiwola ◽  
Gerhard Schaldach ◽  
Peter Walzel

Experimental and CFD studies were performed to investigate the enhancement of convective heat transfer in a laminar cooling system using flow pulsation in a flat channel with series of regular spaced fins. Glycerol-water mixtures with dynamic viscosities in the range of 0.001 kg/ms–0.01 kg/ms were used. A steady flow Reynolds number in the laminar range of 10 < Re < 1200 was studied. The amplitudes of the applied pulsations are in the range of 0.25 < A < 0.55 mm and the frequency range is 10 < f < 60 Hz. Two different cooling devices with active length L = 450 mm and 900 mm were investigated. CFD simulations were performed on a parallel-computer (Linux-cluster) using the software suit CFX11 from ANSYS GmbH, Germany. The rate of cooling was found to be significant at moderate low net flow rates. In general, no significant heat transfer enhancement at very low and high flow rates was obtained in compliance with the experimental data. The heat transfer coefficient was found to increase with increasing Prandtl number Pr at constant oscillation Reynolds number Reosc whereas the ratio of the hydraulic diameter to the length of the channel dh/L has insignificant effect on the heat transfer coefficient. This is due to enhanced fluid mixing. CFD results allow for performance predictions of different geometries and flow conditions.


2019 ◽  
Vol 973 ◽  
pp. 9-14 ◽  
Author(s):  
Mikhail S. Chepchurov ◽  
Nikolay S. Lubimyi ◽  
Vladimir P. Voronenko ◽  
Daniel R. Adeniyi

The use of metal-polymers in the manufacture of mold-forming parts allows for the significant reduction in price and time used in manufacturing of parts. Using data on the thermal conductivity of metal-polymers in calculations of the cooling system of molds allows calculating the optimal cycle of obtaining the product. The authors propose a method of determining the coefficient of heat transfer of metal-polymers based on a die matrix, filled with aluminum. The chosen equipment or measuring tool by them, allows determining the heat transfer coefficient of the material in use. The values of the coefficient of heat transfer of the material in question, obtained in the course of the research can be use in different databases of applications used for modeling production by injection molding. The described method of determining the coefficient of heat transfer may be repeated for samples of metal-polymers.


1960 ◽  
Vol 82 (4) ◽  
pp. 303-312 ◽  
Author(s):  
R. A. Seban

Experimental results are presented for the effectiveness and for the heat-transfer coefficient for a film cooling system in which air was used both for the film and for the free-stream fluids. Injection occurred at a single tangential slot near the leading edge of the plate and the slot size was varied. All flows were turbulent and the injection velocities covered a range from much less to much greater than the free-stream velocity. Correlations are realized for both the effectiveness and for the heat-transfer coefficient and, as in the past experience with such systems, separate specifications are needed for injection velocities greater and less than the free-stream velocity.


Author(s):  
F. Ben Ahmed ◽  
B. Weigand ◽  
K. Meier

Flow mechanisms, heat transfer and discharge coefficient characteristics for a representative part of a turbine casing cooling system, consisting of an array of 20 impinging jets, were numerically investigated. The study focused on the influence of the jet Mach number while maintaining the Reynolds number constant at Re = 7,500. Therefore, the orifice bore diameter or the fluid density had to be varied. The objectives of the current CFD simulations have not been adressed before in literature, not only because heat transfer characteristics and pressure drop are given for impingement jet Mach numbers up to 0.72 at a constant relatively low Reynolds number, but also because fundamental understanding of physical phenomena of the flow in the cylindrical plenum and in the small sharp-edged orifices at the bottom side of the tube is provided. Increasing the Mach number by simultaneously reducing the orifice diameters led to slightly decreasing Nusselt numbers, with average deviations of the order of 14%. However, the heat transfer coefficient increased considerably with increasing Mach number. On the contrary, the variation of the Mach number by varying the density showed only a slight influence on the heat transfer coefficient. The predicted discharge coefficients increased significantly by augmenting the Mach number.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
P. K. Verma ◽  
P. P. Kulkarni ◽  
P. Pandey ◽  
S. V. Prasad ◽  
A. K. Nayak

Abstract In pressurized heavy water reactors (PHWRs), during an unmitigated severe accident, the absence of adequate cooling arising from multiple failures of the cooling system leads to the collapse of pressure tubes and calandria tubes, which may ultimately relocate to the lower portion of the calandria vessel (CV) forming a debris bed. Due to the continuous generation of decay heat in the debris, it will melt and form a molten pool at the bottom of the CV. The CV is surrounded by calandria vault water, which acts as a heat sink at this scenario. In-vessel corium retention (IVR) through the external reactor vessel cooling (ERVC) is conceived as an effective method for maintaining the integrity of a calandria vessel during a severe accident in a nuclear power plant. Under the IVR conditions, it is necessary to ensure that the imparted heat flux due to melt is less than the critical heat flux (CHF) at the bottom of the calandria vessel wall. To evaluate the thermal margin for IVR, experiments are performed in a prototypic curved section of calandria vessel (25o sector) of calandria vessel to determine the CHF, heat transfer coefficient, and its variation along with the curvature of calandria vessel. The effect of moderator drainpipe on CHF and the heat transfer coefficient has also been evaluated. It has been observed that the imparted heat flux is much less than the CHF at the bottom of the calandria vessel.


Author(s):  
Ichiro Kano ◽  
Yuta Higuchi ◽  
Tadashi Chika

The paper describes results from an experimental study of the effect of an electric field on nucleate boiling and the critical heat flux (CHF) in pool boiling at atmospheric pressure with polished smooth boiling surface. A micro scaled electrode with slits for bubbles to come out was designed in order to create non uniform high electric field strength and to produce electrohydrodynamics (EHD) convection with the application of dc voltage. The application of high electric field strongly enhanced the heat flux and the heat transfer coefficient. From observations of the behavior of bubbles over the electrode and the boiling surface condition, the instability between the liquid and the vapor increased the heat flux, the heat transfer coefficient and the CHF.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Aloke Kumar Mozumder ◽  
Mohammed Shafiul Hasib Chowdhury ◽  
Abul Fahad Akon

In spite of wide application of heat pipe in microelectronics cooling system, a complete understanding of heat pipe mechanism has not yet been completed. An experimental investigation of heat transfer performance of a heat pipe for dry condition and with three different liquids as acetone, methanol, and water having four fill ratios, for each liquid has been conducted in the present study. The heat pipe was 5 mm in diameter and 150 mm long with a thermal capacity of 10 W. The evaporator and condenser's temperatures were measured with varying input power to estimate the heat transfer coefficient. This study reveals that the dominating parameters for the heat transfer coefficient are evaporator surface temperature, saturated boiling temperature of working fluid, latent heat of vaporization, and fill ratio. The investigation also shows that 85% fill ratio can be regarded as an optimum value for a heat pipe. A new correlation for the heat transfer coefficient has been proposed here which fairly agrees with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document