Development of Boiling Type Cooling System Using Electrostatic and Electroconvection Force

Author(s):  
Ichiro Kano ◽  
Yuta Higuchi ◽  
Tadashi Chika

The paper describes results from an experimental study of the effect of an electric field on nucleate boiling and the critical heat flux (CHF) in pool boiling at atmospheric pressure with polished smooth boiling surface. A micro scaled electrode with slits for bubbles to come out was designed in order to create non uniform high electric field strength and to produce electrohydrodynamics (EHD) convection with the application of dc voltage. The application of high electric field strongly enhanced the heat flux and the heat transfer coefficient. From observations of the behavior of bubbles over the electrode and the boiling surface condition, the instability between the liquid and the vapor increased the heat flux, the heat transfer coefficient and the CHF.

Author(s):  
Peilin Cui ◽  
Zhenyu Liu

Abstract This study experimentally investigated the flow boiling of HFE-7100 in wavy copper microchannel heat sink (20 mm × 10 mm), which was fabricated with the ultrafast laser micromachining approach, consisting of 20 wavy microchannels with wavelength of 2000 μm and wave amplitude of 100 μm with triangular cross section (200 μm × 573 μm). The experiment was conducted with the mass fluxes of 330.07–550.11 kg/(m2·s) and heat flux of 14.5–411.3 kW/m2 at an inlet temperature of 15°C. Four flow patterns including bubbly flow, slug flow, churn flow and annular flow were captured with the visualization technique. Several confined bubbles with irregular shape were observed. In the low heat flux region, the dominant flow regime of heat transfer in the microchannels is the nucleate boiling and the heat transfer coefficient increases with increasing heat flux. With the nucleate boiling suppressed gradually, the evaporation of thin liquid film begins to dominate and the heat transfer coefficient decreases with the increase of heat flux. The heat flux has a significant effect on heat transfer coefficient compared with the mass flux and vapor quality.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1566 ◽  
Author(s):  
M. M. Sarafraz ◽  
M. S. Shadloo ◽  
Zhe Tian ◽  
Iskander Tlili ◽  
Tawfeeq Abdullah Alkanhal ◽  
...  

Formation of bubbles in water inside an annulus pipe in a flow boiling regime was experimentally investigated. The effect of various variables, such as total dissolved solid materials (TDS) in terms of mass fraction, flow rate of water, and applied heat flux (HF) on the heat transfer coefficient (HTC) and bubble behavior of water, was experimentally investigated. A regression formula was fitted to estimate the average bubble diameter at various TDS values, with accuracy of <4.1% up to heat flux of 90 kW/m2. Results show that the presence of TDS materials can increase the contact angle of bubble and bubble diameter, and also promotes the HTC value of the system. However, flow rate of water suppressed bubble generation, and increased the heat transfer coefficient due to the renewal of the thermal boundary layer around the boiling surface. Likewise, it was identified that forced convective and nucleate boiling heat transfer mechanisms contribute to the flow of boiling water, and heat flux is a key parameter in determining the mechanism of heat transfer. In the present study, heat flux of 15 kW/m2 at 50 °C was the heat flux in which onset of nucleate boiling was identified inside the annulus pipe. The contact angle of water at TDS values of 300 mg/L and 1200 mg/L was 74° and 124°, respectively, showing the improvement in heat transfer characteristics of water due to the presence of TDS materials.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7588
Author(s):  
Nianyong Zhou ◽  
Hao Feng ◽  
Yixing Guo ◽  
Wenbo Liu ◽  
Haoping Peng ◽  
...  

With the rapid increase of heat flux and demand for miniaturization of electronic equipment, the traditional heat conduction and convective heat transfer methods could not meet the needs. Therefore, the spray cooling experiment was carried out to obtain the basic heat transfer and cooling process. In this experiment, the spray cooling system was set up to investigate the influence of refrigerant charge on heat transfer performance in steady-state, dynamic heating, and dissipating processes. In a steady-state, the heat transfer coefficient increased with the rise of the refrigerant charge. In the dynamic dissipating process, both heat flux and heat transfer coefficient decreased rapidly after the critical heat flux, and the surface temperature drop point of each refrigerant charge was presented. The optimum refrigerant charge was provided considering the cooling parameters and the system operating performance. When the refrigerant operating pressure was 0.5 MPa, the spray cooling process presented with the higher heat flux, heat transfer coefficient, and cooling efficiency in this experiment. Meanwhile, the suitable surface temperature drop point and more gentle heat flux curves in the nucleate boiling region were obtained. The research results will contribute to the spray cooling system design, which should be operated before departure from the nucleate boiling point for avoiding cooling failure.


Author(s):  
AS Sabu ◽  
Joby Mackolil ◽  
B Mahanthesh ◽  
Alphonsa Mathew

The study focuses on the aggregation kinematics in the quadratic convective magneto-hydrodynamics of ethylene glycol-titania ([Formula: see text]) nanofluid flowing through an inclined flat plate. The modified Krieger-Dougherty and Maxwell-Bruggeman models are used for the effective viscosity and thermal conductivity to account for the aggregation aspect. The effects of an exponential space-dependent heat source and thermal radiation are incorporated. The impact of pertinent parameters on the heat transfer coefficient is explored by using the Response Surface Methodology and Sensitivity Analysis. The effects of several parameters on the skin friction and heat transfer coefficient at the plate are displayed via surface graphs. The velocity and thermal profiles are compared for two physical scenarios: flow over a vertical plate and flow over an inclined plate. The nonlinear problem is solved using the Runge–Kutta-based shooting technique. It was found that the velocity profile significantly decreased as the inclination of the plate increased on the other hand the temperature profile improved. The heat transfer coefficient decreased due to the increase in the Hartmann number. The exponential heat source has a decreasing effect on the heat flux and the angle of inclination is more sensitive to the heat transfer coefficient than other variables. Further, when radiation is incremented, the sensitivity of the heat flux toward the inclination angle augments at the rate 0.5094% and the sensitivity toward the exponential heat source augments at the rate 0.0925%. In addition, 41.1388% decrement in wall shear stress is observed when the plate inclination is incremented from [Formula: see text] to [Formula: see text].


Author(s):  
Guangyao Lu ◽  
Junsheng Ren ◽  
Guisheng Zhao ◽  
Wenyuan Xiang ◽  
Huaning Ai

Experiments are carried out to investigate the Onset of Nucleate Boiling (ONB) of refrigerant R-113 through vertical and inclined tube-bundle channels. Several methods are adopted to ascertain ONB in the experiments, and their differences are analyzed. The experiments show that the results of ONB estimation from the visualization experiment, ONB estimation from the wall temperature and that from the heat transfer coefficient are uniform. The influences of heat flux, mass flow rate, the geometric dimensions and inclination angle of the tube-bundle channels on the ONB height are explored in detail. On the foundation of the comparisons and analyses, an equation is put forward for calculating the ONB height in tube-bundle channels, which has a good accordance with the experimental results.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Peter Schreivogel ◽  
Michael Pfitzner

A new approach for steady-state heat transfer measurements is proposed. Temperature distributions are measured at the surface and a defined depth inside the wall to provide boundary conditions for a three-dimensional heat flux calculation. The practical application of the technique is demonstrated by employing a superposition method to measure heat transfer and film cooling effectiveness downstream of two different 0.75D deep narrow trench geometries and cylindrical holes. Compared to the cylindrical holes, both trench geometries lead to an augmentation of the heat transfer coefficient supposedly caused by the highly turbulent attached cooling film emanating from the trenches. Areas of high heat transfer are visible, where recirculation bubbles or large amounts of coolant are expected. Increasing the density ratio from 1.33 to 1.60 led to a slight reduction of the heat transfer coefficient and an increased cooling effectiveness. Both trenches provide a net heat flux reduction (NHFR) superior to that of cylindrical holes, especially at the highest momentum flux ratios.


Author(s):  
Chaobin Dang ◽  
Minxia Li ◽  
Eiji Hihara

In this study, the boiling heat transfer coefficients of carbon dioxide with a PAG-type lubricating oil entrained from 0 to 5 wt% in a horizontally placed smooth tube with an inner diameter of 2 mm were experimentally investigated under the following operating conditions: mass fluxes from 170 to 320 kg/m2s, heat fluxes from 4.5 to 36 kW/m2, and a saturation temperature of 15 °C. The results show that for a low oil concentration of approximately 0.5% to 1%, no further deterioration of the heat transfer coefficient was observed at higher oil concentrations in spite of a significant decrement of the heat transfer coefficient compared to that under an oil-free condition. The heat flux still had a positive influence on the heat transfer coefficient in low quality regions. However, no obvious influence was observed in high quality regions, which implies that nucleate boiling dominates in the low quality region whereas it is suppressed in the high quality regions. Unlike the mass flux under an oil-free condition, mass flux has a significant influence on the heat transfer coefficient, with a maximum increase of 50% in the heat transfer. On the basis of our experimental measurements of the flow boiling heat transfer of carbon dioxide under wide experimental conditions, a flow boiling heat transfer model for horizontal tubes has been proposed for a mixture of CO2 and polyalkylene glycol (PAG oil) in the pre-dryout region, with consideration of the thermodynamic properties of the mixture. The surface tension and viscosity of the mixture were particularly taken into account. New factors were introduced into the correlation to reflect the suppressive effects of the mass flux and the oil on both the nucleate boiling. It is shown that the calculated results can depict the influence of the mass flux and the heat flux on both nucleate boiling and convection boiling.


2000 ◽  
Vol 122 (4) ◽  
pp. 741-748 ◽  
Author(s):  
J. Darabi ◽  
M. M. Ohadi ◽  
S. V. Desiatoun

The effect of an electric field on the falling-film evaporation of refrigerant R-134a on a vertical plate and three commercially available tubes was investigated experimentally. The plate test section was 25.4 mm wide and 76.2 mm long, and each tube test section was 19 mm in diameter and 140 mm long. Experiments were conducted in both falling film and spray evaporation modes. The effects of various parameters such as heat flux, refrigerant flow rate, electrode gap, and applied voltage were investigated. It was found that in the presence of an applied electric field, the maximum enhancement in the heat transfer coefficient for both falling film and spray evaporation modes on a plate was nearly the same. A maximum enhancement of fourfold in the heat transfer coefficient with the plate, 90 percent with the smooth tube, 110 percent with the Turbo BIII, and 30 percent with 19 fpi tube were obtained. The electrohydrodynamic power consumption in all cases was less than 0.12 percent of the total energy exchange rate in the test section. [S0022-1481(00)03003-6]


Author(s):  
M. Hamayun Maqbool ◽  
Bjo¨rn Palm ◽  
R. Khodabandeh ◽  
Rashid Ali

Experiments have been performed to investigate heat transfer in a circular vertical mini channel made of stainless steel (AISI 316) with internal diameter of 1.70 mm and a uniformly heated length of 245 mm using ammonia as working fluid. The experiments are conducted for a heat flux range of 15 to 350 kW/m2 and mass flux range of 100 to 500 kg/m2s. The effects of heat flux, mass flux and vapour quality on the heat transfer coefficient are explored in detail. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Experimental results are compared to predictive methods available in the literature for boiling heat transfer. The correlations of Cooper et al. [1] and Shah [3] are in good agreement with our experimental data.


1969 ◽  
Vol 91 (1) ◽  
pp. 27-36 ◽  
Author(s):  
B. S. Shiralkar ◽  
Peter Griffith

At slightly supercritical pressure and in the neighborhood of the pseudocritical temperature (which corresponds to the peak in the specific heat at the operating pressure), the heat transfer coefficient between fluid and tube wall is strongly dependent on the heat flux. For large heat fluxes, a marked deterioration takes place in the heat transfer coefficient in the region where the bulk temperature is below the pseudocritical temperature and the wall temperature above the pseudocritical temperature. Equations have been developed to predict the deterioration in heat transfer at high heat fluxes and the results compared with previously available results for steam. Experiments have been performed with carbon dioxide for additional comparison. Limits of safe operation for a supercritical pressure heat exchanger in terms of the allowable heat flux for a particular flow rate have been determined theoretically and experimentally.


Sign in / Sign up

Export Citation Format

Share Document