A Fuzzy Control Approach for the Coordinated-Level Control of the Modular-HTGR-Based Nuclear Steam Supplying System

Author(s):  
Yue Yuan ◽  
Xiaojin Huang

As one of the most popular Generation IV nuclear energy system, High Temperature Gas Cooled Reactor (HTGR) has outstanding inherent safety features. However, the nonlinearity and complexity of the modular-HTGR-based nuclear steam supplying system (NSSS) has put higher requirements to its control system. Based on the basic ideas and theories of fuzzy system, fuzzy control method provides a powerful tool to the control of nonlinear systems. This paper built the T-S fuzzy model of the modular-HTGR-based nuclear steam supplying system (NSSS), and designed the steam temperature T-S fuzzy controller using the parallel distributed compensation (PDC) method. Simulation shows that the designed T-S fuzzy controller has a better effect than the traditional PID control method.

2018 ◽  
Vol 15 (1) ◽  
pp. 172988141775415 ◽  
Author(s):  
Xiaomeng Yin ◽  
Xinming Li ◽  
Lei Liu ◽  
Yongji Wang ◽  
Xing Wei

Achieving balance between robustness and performance is always a challenge in the hypersonic vehicle flight control design. In this research, we focus on dealing with uncertainties of the fuzzy control system from the viewpoint of reliability. A probabilistic robust mixed H2/ H∞ fuzzy control method for hypersonic vehicles is presented by describing the uncertain parameters as random variables. First, a Takagi–Sugeno fuzzy model is employed for the hypersonic vehicle nonlinear dynamics characteristics. Next, a robust fuzzy controller is developed by solving a reliability-based multi-objective linear matrix inequality optimization problem, in which the H2/ H∞ performance is optimized under the condition that the system is robustly reliable to uncertainties. By this method, the system performance and reliability can be taken into account simultaneously, which reduces the conservatism in the robust fuzzy control design. Finally, simulation results of a hypersonic vehicle demonstrate the feasibility and effectiveness of the presented method.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Wen-Jer Chang ◽  
Bo-Jyun Huang

The variance and passivity constrained fuzzy control problem for the nonlinear ship steering systems with state multiplicative noises is investigated. The continuous-time Takagi-Sugeno fuzzy model is used to represent the nonlinear ship steering systems with state multiplicative noises. In order to simultaneously achieve variance, passivity, and stability performances, some sufficient conditions are derived based on the Lyapunov theory. Employing the matrix transformation technique, these sufficient conditions can be expressed in terms of linear matrix inequalities. By solving the corresponding linear matrix inequality conditions, a parallel distributed compensation based fuzzy controller can be obtained to guarantee the stability of the closed-loop nonlinear ship steering systems subject to variance and passivity performance constraints. Finally, a numerical simulation example is provided to illustrate the usefulness and applicability of the proposed multiple performance constrained fuzzy control method.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yunli Hao ◽  
Shuang Li ◽  
Qing Xia ◽  
Maohua Wang

For a class of nonlinear systems with a nonlinear relationship between input and output, a fuzzy control method combining interval type-2 and T-S fuzzy controller is proposed based on type-2 fuzzy system theory. In order to ensure its stability, anti-interference ability, and minimum approximation error, this design combines direct, indirect, supervised, and compensation control types to construct the controller. In this way, the structure of the controller not only has the characteristics of the type-2 fuzzy set, which can reduce the uncertainty of rules, but also has a T-S fuzzy model with linear combination of input variables, which can improve the modeling accuracy and reduce the number of rules of the system. By using the Lyapunov synthesis method, the global stability and the convergence of the closed-loop system under the condition that all variables are uniformly bounded are analyzed, and the adaptive laws of the system parameters are given as well. Finally, the effectiveness and superiority of the proposed method are verified by simulation.


2014 ◽  
Vol 556-562 ◽  
pp. 1472-1475 ◽  
Author(s):  
Bing Dong ◽  
Yan Tao Tian ◽  
Chang Jiu Zhou

This thesis puts forward one optimal adaptive fuzzy control method based on the pure electric vehicle energy management system of the fuzzy control which has been founded already. By adding an optimizing researching model based on the conventional fuzzy control strategy, the thesis can pick up the valuable control rules based on the dynamic programming theory and also can adjust the parameter of the fuzzy controller automatically according to the system operating. These can make the sum of the energy loss reduce to the min. The experiment points out that this method makes the vehicle possess good economic performance in the same driving cycle.


Author(s):  
Xinyan Ou ◽  
Jorge Arinez ◽  
Qing Chang ◽  
Guoxian Xiao

In the last decade, global competition has forced manufacturers to optimize logistics. The implementation of collapsible containers provides a new perspective for logistics cost savings, since using collapsible containers reduces the frequency of shipping freight. However, optimization of logistic cost is complicated due to the interactions in a system, such as market demand, inventory, production throughput, and uncertainty. Therefore, a systematic model and accurate estimation of the total cost and system performance are of great importance for decision making. In this paper, a mathematical model is developed to describe deterministic and stochastic scenarios for a closed-loop container dynamic flow system. The uncertainties in a factory and a supplier are considered in the model. The performance evaluation of the collapsible container system and total cost estimation are provided through model analysis. Furthermore, fuzzy control method is proposed to monitor the processing rate of the supplier and the factory and to adjust the rate of the supplier operation then further reduce the logistic cost. A case study with a matlab simulation is presented to illustrate the accuracy of the mathematical model and the effectiveness of the fuzzy controller.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xiliang Ma ◽  
Ruiqing Mao

Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.


2013 ◽  
Vol 401-403 ◽  
pp. 1010-1013
Author(s):  
Jing Ling ◽  
Jin Che ◽  
Da Ming Liu

Temperature control system of infrared heating oven in moisture analyzer is characteristic of nonlinear, time-varying and time-lag. A composite fuzzy control (CFC) method is proposed, which combines improved Bang-Bang control with two-stage intelligent fuzzy control. The control algorithm is implemented by MSP430F5438. When the temperature error e between the desired temperature and actual temperature in heating oven is larger than threshold value, the improved Bang-Bang controller is employed in rapidly reducing the error; to decrease the system overshoot, the basic fuzzy controller is used; to reduce the steady-state error of basic fuzzy controller, the auxiliary fuzzy controller is applied. The steady-state error of improved fuzzy controller for oven temperature is less than 0.5°C, which is better than the Chinese National Standards for moisture content measurement.


2010 ◽  
Vol 159 ◽  
pp. 644-649
Author(s):  
Jing Hua Zhao ◽  
Wen Bo Zhang ◽  
He Hao

Based on the analysis of performance of vehicle and its suspension, half vehicle model of five DOF and road model were built and the dynamic equations of half vehicle were derived according to the parameters of a commercial vehicle. In addition, a novel fuzzy logic control system based on semi-active suspension was introduced to achieve the optimal vibration characteristic, with changing the adjustable dampers according to dynamic vertical body acceleration signal. The fuzzy control was designed based on non-reference model method that acceleration value was sent to the fuzzy controller directly. And then, simulation analysis of semi-active suspension with fuzzy control method were implemented on the B-class road surface. The results showed that the semi-active suspension control system introduced in this paper has better performance on vieicle vibration characteristic, compared to passive suspension.


Sign in / Sign up

Export Citation Format

Share Document