High Temperature Oxidation of Polycrystalline Diamond Coated Zirconium Alloy

Author(s):  
Jan Škarohlíd ◽  
Radek Škoda ◽  
Irena Kratochvílová

Polycrystalline diamond coating is a promising possibility for prevention, or reduction of high temperature oxidation of zirconium alloys and decrease corrosion rate of zirconium alloy during standard operation. Zirconium alloys are widely used as cladding and construction material in almost all types of nuclear reactors, where usually creates a barrier between nuclear fuel and cooling water in the primary circuit. Hydrogen and considerable amount of heat is released during steam oxidation that may occur in an eventual accident. In this paper zirconium alloy was covered by polycrystalline diamond layer using Plasma Enhanced Linear Antennas Microwave Chemical Vapor Deposition system reactor. X-Ray Diffraction and Raman spectroscopy measurements confirmed coverage of the surface area with crystalline and amorphous carbon layer. Characterizations (Raman spectroscopy) were done for zirconium alloy covered with polycrystalline diamond layer before and after high temperature steam exposure. Weight increase and hydrogen release ware measured during steam exposure.

Author(s):  
Jan Škarohlíd ◽  
Radek Škoda

Polycrystalline diamond coating is a promising possibility for prevention, or reduction of high temperature oxidation of zirconium alloys. Zirconium alloys are used as cladding material in almost all types of nuclear reactors, where creates a barrier between nuclear fuel and cooling water in the primary circuit. Hydrogen and considerable amount of heat is released during steam oxidation that may occur in an eventual accident. In this paper Zircaloy-2 alloy was covered by polycrystalline diamond layer using Plasma Enhanced Linear Antennas Microwave Chemical Vapor Deposition system reactor. X-Ray Diffraction and Raman spectroscopy measurements confirmed coverage of the surface area with crystalline and amorphous carbon layer. Characterizations were done for zirconium alloy covered with diamond layer before and after corrosion and irradiation tests - ion beam irradiation tests and high temperature steam exposure.


2014 ◽  
Vol 896 ◽  
pp. 617-620 ◽  
Author(s):  
Bernardus Bandriyana ◽  
Djoko Hadi Prajitno ◽  
Arbi Dimyati

The zirconium alloys ZrNbMoGe have been developed with the aim to improve its high temperature oxidation for employment as a cladding material in Pressurized Water Reactor (PWR) and to extend the over all fuel burn-up. In this paper the effect of Cu addition on the high temperature oxidation behavior of ZrNbMoGe alloy was investigated. The zirconium alloy was produced by melting the zirconium-niobium-molybdenum-germanium and copper-sponge in an arc furnace in an argon environment by the temperature higher than 1850C. The weight percentages of the elements were 2.50 wt.% Nb, 0.5 wt.% Mo, 0.1 wt.% Ge, 0.5 wt.% Cu and Zr in balanced. The oxidation test was carried out in the Magnetic Suspension Balance (MSB) workstation. Two specimens of ZrNbMoGe alloys without and with Cu addition were oxidized in atmosphere at temperature of 500 °C and 700 °C for 8 hours. The results show the oxidation kinetics followed the parabolic rate law. The difference of oxidation behaviors of the two specimens were considered to be caused by the formation of different kind of oxide layers due to the Cu addition.


2019 ◽  
Vol 71 (5) ◽  
pp. 706-711 ◽  
Author(s):  
Bingxue Cheng ◽  
Haitao Duan ◽  
Yongliang Jin ◽  
Lei Wei ◽  
Jia Dan ◽  
...  

Purpose This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature oxidation decay mechanism of unsaturated esters and the nature of the anti-oxidation properties of the additives. Design/methodology/approach Using a DXR laser microscopic Raman spectrometer and Linkam FTIR600 temperature control platform, the isothermal oxidation experiments of TMPTO with or without 1.0 wt. % of different antioxidants were performed. Findings The results indicated that the Raman peaks of =C-H, C=C and -CH2- weaken gradually with prolonged oxidation time, and the corresponding Raman intensities drop rapidly at higher temperatures. The aromatic amine antioxidant can decrease the attenuation of peak intensity, as it significantly reduces the rate constant of C=C thermal oxidation. The hindered phenolic antioxidant has a protective effect during the early stages of oxidation (induction period), but it may accelerate the oxidation of C=C afterwards. Originality/value Research on the structure changes of synthetic esters during oxidation by Raman spectroscopy will be of great importance in promoting the use of Raman spectroscopy to analyze the oxidation of lubricants.


2015 ◽  
Vol 465 ◽  
pp. 400-406 ◽  
Author(s):  
А.S. Kuprin ◽  
V.А. Belous ◽  
V.N. Voyevodin ◽  
V.V. Bryk ◽  
R.L. Vasilenko ◽  
...  

2020 ◽  
Vol 28 ◽  
pp. 8-14
Author(s):  
Adéla Chalupová ◽  
Martin Steinbrück ◽  
Mirco Grosse ◽  
Jakub Krejčí ◽  
Martin Ševeček

The investigations in this paper deal with the Cr-Ni alloy. The material has been recently proposed as a potential ATF concept, primarily due to its behaviour under high-temperature oxidation. A set of experiments to determine the melting point and describe the oxidation kinetics of the Cr-Ni alloy were performed in Karlsruhe Institute of Technology. Presented results reveal its superb oxidation resistance comparing to zirconium alloys. Therefore, the alloy has a great potential for nuclear applications.


2019 ◽  
Vol 158 ◽  
pp. 109971 ◽  
Author(s):  
R. Guillou ◽  
M. Le Saux ◽  
E. Rouesne ◽  
D. Hamon ◽  
C. Toffolon-Masclet ◽  
...  

2021 ◽  
Vol 3 ◽  
pp. 69-78
Author(s):  
A. A. Yakushkin ◽  

Three directions of the establishment of accident tolerant fuel cladding for light water reactors are actively exploring at present: 1) replacement zirconium alloy E110 for more corrosion-resistant material in accident operation conditions; 2) surface dispersion hardening or doping of the zirconium cladding of fuel element; 3) deposition a corrosion-resistant coating to the fuel cladding. The first direction requires significant and irreversible changes in fuel rod production technology and has long-term prospects. Conversely, the second direction suggest minimal changes in the fuel rod production technology, however, it has no significant effect on the high temperature oxidation kinetics of fuel claddings in steam. Using of a corrosion resistant coating results in a significant change in the high temperature oxidation kinetics of the zirconium alloy, (no transition to linear oxidation) that is related to maintaining the continuity of the oxide layer formed during oxidation. The issue provides a brief overview of the current state of research in the field of fuel, tolerant to the effects of coolant in emergency situations.


Sign in / Sign up

Export Citation Format

Share Document