Numerical Simulation of Crud Effects on the Flow and Heat Transfer Performance in PWR 17×17 Rod Bundles

Author(s):  
Bing Ren ◽  
Fujun Gan ◽  
Yu Dang ◽  
Libing Zhu

Corrosion products on fuel cladding surface have a significant impact on reactor operation. These types of deposits are defined as Corrosion Residual Unidentified Deposit (CRUD) and are consist of a porous matrix of nickel and iron based oxides deposited on the fuel cladding surface. It is well known that crud deposits may cause potential Crud Induced Localized Corrosion (CILC) risk and Crud Induced Power Shift (CIPS) risk. The paper presents a Computational Fluid Dynamic (CFD) method of predicting the crud effect on the thermal hydraulic performance. The effect of the crud roughness is mainly considered in the simulation, the flow near the wall of the crud is solved by modifying wall function in the prism layer. The simulation object is a span of typical 17×17 rod bundle with a mid grid in PWR, all the structures including grid straps, springs, dimples, mixing vanes and welding spots are included. Thicknesses of grid and fuel cladding are considered in order to precisely simulate the fluid-solid conjugate heat transfer. The crud is set to be covered on the full span downstream of the grid. The simulation is based on the CILC risk pre-analysis and the computed information in the mostly likely crud deposit position is used as boundary condition. Based on the simulation results, the crud effects on the flow characteristics including vortex structures, circulation, turbulent intensity and second flow intensity and the heat transfer characteristics including rod temperature, fluid temperature and heat transfer coefficient are discussed in detail.

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4596
Author(s):  
Piotr Bogusław Jasiński

The presented paper, which is the first of two parts, shows the results of numerical investigations of a heat exchanger channel in the form of a cylindrical tube with a thin insert. The insert, placed concentrically in the pipe, uses the phenomenon of thermal radiation absorption to intensify the heat transfer between the pipe wall and the gas. Eight geometric configurations of the insert size were numerically investigated using CFD software, varying its diameter from 20% to 90% of the pipe diameter and obtaining the thermal-flow characteristics for each case. The tests were conducted for a range of numbers Re = 5000–100,000 and a constant temperature difference between the channel wall and the average gas temperature of ∆T = 100 °C. The results show that the highest increase in the Nu number was observed for the inserts with diameters of 0.3 and 0.4 of the channel diameter, while the highest flow resistance was noted for the inserts with diameters of 0.6–0.7 of the channel diameter. The f/fs(Re) and Nu/Nus(Re) ratios are shown on graphs indicating how much the flow resistance and heat transfer increased compared to the pipe without an insert. Two methods of calculating the Nu number are also presented and analysed. In the first one, the average fluid temperature of the entire pipe volume was used to calculate the Nu number, and in the second, only the average fluid temperature of the annular portion formed by the insert was used. The second one gives much larger Nu/Nus ratio values, reaching up to 8–9 for small Re numbers.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983358
Author(s):  
Hongyan Chu ◽  
Xuecong Lin ◽  
Ligang Cai

In the offset press, ink flows in the microchannel made of two rotating rollers that are in the state of squeezing and contacting. The ink flow characteristics are not only influenced by the viscous dissipation effect, but also change with the heat transfer. First, by summarizing the common viscosity–shear rate models of non-Newtonian fluid, the power law model was chosen for describing offset ink through rheometer measuring. Combined with the experimental data, the viscosity–temperature relationship of the offset ink was described by the Arrhenius’s law. Then, the temperature characteristics of the offset ink fluid in the microchannel were studied using the fluid simulation software FLUENT. The ink fluid temperature field model considering viscous dissipation and heat transfer was established, and the temperature distributions of the ink fluid inside the microchannel and at the exit and entrance were obtained. The influence of the feature size on the ink temperature was also researched. Finally, the ink temperature and flow characteristics were compared with that under the condition without heat transfer. We got the influence of feature size and heat transfer on the ink temperature characteristics. As the feature size is smaller, the ink temperature increase from the microchannel entrance to the exit, increases first and then decreases, and keeps invariant at last. The heat transfer makes the viscous dissipation weaken relatively and then the ink temperature decreases. In a word, the heat transfer enhances as the feature size decreases. The results provide reference for improving the printing quality of offset press.


Author(s):  
Petrus Setyo Prabowo ◽  
◽  
Stefan Mardikus ◽  
Ewaldus Credo Eukharisto ◽  

Vortex generators are addition surface that can increase heat transfer area and change the fluid flow characteristics of the working fluid to increase heat transfer coefficient. The use of vortex generators produces longitudinal vortices that can increase the heat transfer performance because of the low pressure behind vortex generators. This investigation used delta winglet vortex generator that was combined with rectangular vortex generator to Reynold numbers ranging 6,000 to 10,000. The parameters of Nusselt number, friction factor, velocity vector and temperature distribution will be evaluated.


Author(s):  
Guidong Chen ◽  
Qiuwang Wang

In the present paper, flow and heat transfer characteristics of shell-and-tube heat exchanger with continuous helical baffles (CH-STHX) is experimentally studied. Correlations for heat transfer and pressure drop, which are estimated by Nusselt number and friction factor, are fitted by experiment data for thermal design. Computational Fluid Dynamic (CFD) method is also used to compare the heat transfer and flow performance of STHX with continuous helical baffles (CH-STHX), STHX with combined helical baffles (CMH-STHX) and STHX with discontinuous helical baffles (DCH-STHX). The numerical results show that, for the same Reynolds number, the Nusselt numbers Nuo of the CMH-STHX and CH-STHX is about 37.6%, 78.2% higher than that of the DCH-STHX; the friction factor fo of the CH-STHX is about 14.8% and 150.2% higher than that of CMH-STHX and DCH-STHX. If the velocity ratios RCMH, CH and RDCH, CH are bigger than 1.55 and 4.0 in the Nusselt number range from 40 to 70, the CMH-STHX and the DCH-STHX may have higher Nusselt numbers than the CH-STHX for the same mass flow rate in the shell side.


2021 ◽  
Vol 25 (6) ◽  
pp. 74-81
Author(s):  
R. Shakir ◽  

The cooling equipment project must use electrical and electronic equipment because of the need to remove the heat generated by this equipment. Investigation; R-113 single-phase flow heat transfer; (50 x 50 mm2) cross-section and (5 mm) height; used in a series of stagger-square micro-pin fins. Inlet temperature of (25 °C); (6) Mass flow rate at this temperature, the recommended range is (0. 0025 -0.01 kg/sec) the inlet and outlet pressures are approximately (1-1.10 bar), and through (25- 225 watts) applied heat. The iterative process is used to obtain the heat flow characteristics, for example; the single-phase heat transfer coefficient is completely laminar flow developing, in this flow, guesses the wall temperature, guess the fluid temperature. The possible mechanism of heat transfer has been discussed


Author(s):  
Y. L. Shen ◽  
Tao Lu ◽  
Bo Liu

Pressurizer surge lines are essential pipeline structure in NPPs, and the thermal stratification in surge line is recognized as one of the possible cause of thermal fatigue. In this paper, a Computational Fluid Dynamic (CFD) method has been adopted to simulate temperature fluctuations on the process of temperature rising in a pressurizer surge line under rolling motion of single degree of freedom. This work focuses on a fundamental description of differences of thermal stratification between the surge line rolling around the coordinate X-axis condition and that in a static state. The Large-eddy simulation (LES) model is employed to capture the details of temperature change in surge line. Temperature distributions near the inner wall of a surge line pipe with or without swinging were monitored and compared. The temperature differences between the top and bottom of the pipe sections are employed to represent the maximum temperature differences at all the monitored sections. As the surge line swinging, the pattern of temperature distribution and the length of thermal stratification development are different from that in a static. Fluid temperature fluctuation in surge line occur periodically during the fluid temperature rising when the surge line is rotated with the X-axis, and the temperature difference between top and bottom of the surge line is reduced in the same motion mode compared with the static state.


Sign in / Sign up

Export Citation Format

Share Document