An Innovative Spherical Fuel Element to Inhibit the Infiltration of Liquid Fluoride Salt in Molten Salt Reactor

Author(s):  
Yajuan Zhong ◽  
Jun Lin ◽  
Liujun Xu ◽  
Haitao Jiang ◽  
Zhiyong Zhu

To inhibit the infiltration of liquid fluoride salt and easy to load and unload, fuel element in molten salt reactor (MSR) was isostatically pressed with an innovative design: A fuel-free low density graphite core of ≤ 30 mm diameter embedded in fuel-zone shell of ≥ 2.5 mm thickness, and then enveloped in a high density graphite shell of ≥ 5 mm thickness. Bulk density of the spherical fuel element can be designed from the range of 1.65–1.80 g/cm3, which is lower than the density of the liquid fluoride salt to make sure the fuel element can float in the MSR to load and unload. Characteristics of mercury infiltration and molten salt infiltration in graphite shell were investigated and compared with A3-3 graphite to identify the infiltration behaviors. The results indicated that the graphite shell has a low porosity about 9%, and an average pore diameter of 100 nm. The fluoride salt occupation of A3-3 was 10 wt% under 6.5 atm, whereas the salt gain did not infiltrate in graphite shell even up to 6.5 atm. It demonstrated that the outside graphite shell could inhibit the infiltration of liquid fluoride salt effectively. At the operating temperature of MSR (700 °C), thermal conductivity of graphite shell was 13.61 W/m K. The coefficient of thermal expansion (CTE) of outside graphite shell lied in 6.01×10−6 K−1 (α⫽) and 6.15×10−6 K−1 (α⊥) at the temperature range of 25–700 °C. The anisotropies factor of graphite shell calculated by CTE maintained below 1.12, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic properties of graphite shell are beneficial for the integrity and safety of the spherical fuel element for a MSR.

2017 ◽  
Vol 490 ◽  
pp. 34-40 ◽  
Author(s):  
Yajuan Zhong ◽  
Junpeng Zhang ◽  
Jun Lin ◽  
Liujun Xu ◽  
Feng Zhang ◽  
...  

Author(s):  
Yang Liu ◽  
Jun Wang

Fuel transport is an indispensable task for nuclear power plants. For pressurized water reactors (PWR) and boiling water reactors (BWR), many research projects have been completed for designing and testing the transport casks for fresh fuel as well as spent fuel [1–3]. To ensure the safety of nuclear fuel during the transportation, many aspects should be analyzed and examined for the casks with fuel inside, such as heat transfer and temperature calculation, radiation protection, nonproliferation issues, etc. The transport cask discussed in this paper is especially for new spherical fuel elements, which should be designed in accordance with the stipulations in the GB11806 Regulations for the Safe Transport of Radioactive Material [4]. The Transport Cask for spherical fuel elements used in molten salt reactor (MSR) should be designed in accordance with the safety standards for transport of radioactive material. It is necessary to evaluate the thermal performance of the transport cask separately in normal transport condition and in accident transient. The MSR fuel sphere elements cask is in a circular cylinder shape and composed of inner container and outer shell cask. The objective of the thermal analysis of the cask under hypothetical accident conditions is to demonstrate that the cask containment boundary structural components are maintained within their safe operating temperature ranges. The heat transfer process (conduction, convection, and radiation) is simulated by ANSYS-CFX in this paper and it is demonstrated that the components of cask are maintained in safe operating temperature ranges. The calculation results are below limit temperatures, indicating that the thermal design of the cask could meet the Standard Regulations. The result is also compared with the fire test, which shows the calculation model is conservative and rational.


RSC Advances ◽  
2018 ◽  
Vol 8 (59) ◽  
pp. 33927-33938 ◽  
Author(s):  
Heyao Zhang ◽  
Qiantao Lei ◽  
Jinliang Song ◽  
Min Liu ◽  
Can Zhang ◽  
...  

Nanopore pyrolytic graphite coatings (PyC, average pore size ∼64 nm) were prepared on graphite to inhibit liquid fluoride salt and Xe135 penetration.


2019 ◽  
Vol 5 ◽  
pp. 9 ◽  
Author(s):  
Julien Giraud ◽  
Veronique Ghetta ◽  
Pablo Rubiolo ◽  
Mauricio Tano Retamales

Experimental studies have been developed on a new freeze plug concept for safety valves in facilities using molten salt. They are designed to allow the closure of an upstream circuit by solidifying the molten salt in a section of the device and to passively melt in case of a loss of electric power, thus releasing the upper fluid. The working principle of these cold plug designs relies on the control of the heat transfer balance inside the device, which determines whether the salt inside the cold plug solidifies or melts. The device is mainly composed of steel masses that are dimensioned to provide sufficient thermal heat storage to melt the salt and thus open the cold plug after the electric power is stopped. The final goal of the work is to provide useful recommendations and guidelines for the design of a cold plug for the emergency draining system of a molten salt reactor. Some numerical thermal simulations were performed with ANSYS mechanical (Finite Element Method) to be compared with results of the experiments and to make extrapolations for a new component to be used in a reactor.


Author(s):  
Brian C. Kelleher ◽  
Kieran P. Dolan ◽  
Paul Brooks ◽  
Mark H. Anderson ◽  
Kumar Sridharan

Li 2 BeF 4 , or flibe, is the primary candidate coolant for the fluoride-salt-cooled high-temperature nuclear reactor (FHR). Kilogram quantities of pure flibe are required for repeatable corrosion tests of modern reactor materials. This paper details fluoride salt purification by the hydrofluorination–hydrogen process, which was used to regenerate 57.4 kg of flibe originating from the secondary loop of the molten salt reactor experiment (MSRE) at Oak Ridge National Laboratory (ORNL). Additionally, it expounds upon necessary handling precautions required to produce high-quality flibe and includes technological advancements which ease the purification and analysis process. Flibe batches produced at the University of Wisconsin are the largest since the MSRE program, enabling new corrosion, radiation, and thermal hydraulic testing around the United States.


2021 ◽  
Author(s):  
M. Rose ◽  
E. Wu ◽  
T. Lichtenstein ◽  
J. Krueger ◽  
S. Thomas ◽  
...  

2017 ◽  
Author(s):  
Che Nor Aniza Che Zainul Bahri ◽  
Wadee’ah Mohd Al-Areqi ◽  
Mohd ’Izzat Fahmi Mohd Ruf ◽  
Amran Ab. Majid

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Qisen Cheng ◽  
Yutao Qin ◽  
Yogesh B. Gianchandani

This paper reports on a bidirectional Knudsen pump (KP) with a 3D-printed thermal management platform; the pump is intended principally for microscale gas chromatography applications. Knudsen pumps utilize thermal transpiration, where non-viscous flow is created against a temperature gradient; no moving parts are necessary. Here, a specialized design leverages 3D direct metal laser sintering and provides thermal management that minimizes loss from a joule heater located on the outlet side of KP, while maintaining convective cooling on the inlet side. The 3D-KP design is integrative and compact, and is specifically intended to simplify assembly. The 3D-KP pumping area is ≈1.1 cm2; with the integrated heat sink, the structure has a footprint of 64.2 × 64.2 mm2. Using mixed cellulose ester (MCE) membranes with a 25 nm average pore diameter and 525 μm total membrane thickness as the pumping media, the 3D-KP achieves a maximum flow rate of 0.39 sccm and blocking pressure of 818.2 Pa at 2 W input power. The operating temperature is 72.2 °C at ambient room temperature. In addition to MCE membranes, anodic aluminum oxide (AAO) membranes are evaluated as the pumping media; these AAO membranes can accommodate higher operating temperatures than MCE membranes. The 3D-KP with AAO membranes with 0.2 μm average pore diameter and 531 μm total membrane thickness achieves a maximum flow rate of 0.75 sccm and blocking pressure of 496.1 Pa at 9.8 W at an operating temperature of 191.2 °C.


Sign in / Sign up

Export Citation Format

Share Document