Severe Accident Analysis With Spatial Discretized Model by MAAP: Part 1 — Parametric Study on Fukushima-Daiichi Unit-2

Author(s):  
Kenichi Kanda ◽  
Yoshihisa Nishi ◽  
Kazuma Abe ◽  
Satoshi Nishimura ◽  
Koichi Nakamura ◽  
...  

Accident analyses of the Fukushima-Daiichi unit-2 nuclear power plant were performed with MAAP (Modular Accident Analysis Program) version 5.03. We assumed RCIC, SRV operation and alternative water injection in order to reproduce the measured pressure and temperature values in RPV and PCV. From parametric studies, it was found that the analysis results were in good agreement with the measured data. In this paper, the results of the parametric studies are reported. Furthermore, spatial discretization of compartments (such as rooms in the reactor building, etc.) into small parts successfully demonstrated the transient distribution and deposition of fission products (FPs) across the rooms. Such special discretization is particularly important for the forensic investigation of severe accidents and the deposited amount in the R/B might be estimated by using this detailed model.

Author(s):  
Yoshihisa Nishi ◽  
Kenichi Kanda ◽  
Kazuma Abe ◽  
Satoshi Nishimura ◽  
Koichi Nakamura ◽  
...  

Accident analyses of unit 3 in the Fukushima-Daiichi nuclear power station were performed with MAAP (Modular Accident Analysis Program) 5.03. In the analysis, the operations of RCIC, HPCI, SRV were simulated and assuming the operation of alternative water injection to reproduce the measured pressure and temperature. As a result of parametric evaluation, analysis results consistent with measured values are obtained. In this paper, the results of the sensitivity analysis are reported. Simultaneously, attempts were made to analyze the transient and deposition amount of fission product (FP) in the reactor building (R/B) and a model dividing each room of R/B in detail was created to confirm the FP behavior. Based on these analyses, the deposition amount of the primary containment vessel (PCV) (drywell (D/W) and wetwell (W/W)) and R/B could be estimated using detailed model of the R/B dividing into nodes in the MAAP simulation.


Author(s):  
Masanori Naitoh ◽  
Marco Pellegrini ◽  
Hiroaki Suzuki ◽  
Hideo Mizouchi ◽  
Hidetoshi Okada

This paper describes analysis results of the early phase accident progression of the Fukushima Daiichi Nuclear Power Plant (NPP) Unit 1 by the severe accident analysis code SAMPSON. The isolation condensers were the only devices for decay heat removal at Unit 1, but they stopped after the loss of AC and DC powers. Since there were no decay heat removal for about 14 hours after their termination until the start of alternative water injection into the core by the fire engine, the core melt and the reactor pressure vessel (RPV) bottom failure occurred resulting in large amount of fission products release into the environment. The original SAMPSON was improved by adding new modellings for the phenomena which have been deemed specific to the Fukushima Daiichi NPP: (1) deterioration of SRV gaskets and (2) buckling of in-core-monitor housings which caused the early steam leakage from the core into the drywell, and (3) melt of the in-core-monitor housings in the lower plenum of the RPV. The analysis results showed that (1) 55.3% of UO2 of the initial loading and 66.1% of the core material including UO2, zircaloy, steel and control materials had melted down into the pedestal of the drywell, (2) the amount of Hydrogen generated by Zr-H2O reaction was 686 kg, (3) amount of Cs element released from fuels was 61 kg which was 72% of the total Cs element which was included in fuels at the initiation of the accident, and (4) 18.3% of the corium which fell into the pedestal was one large lump and the 81.7% was particulate corium.


Author(s):  
Atsuo Takahashi ◽  
Marco Pellegrini ◽  
Hideo Mizouchi ◽  
Hiroaki Suzuki ◽  
Masanori Naitoh

The transient process of the accident at the Fukushima Daiichi Nuclear Power Plant Unit 2 was analyzed by the severe accident analysis code, SAMPSON. One of the characteristic phenomena in Unit 2 is that the reactor core isolation cooling system (RCIC) worked for an unexpectedly long time (about 70 h) without batteries and consequently core damage was delayed when compared to Units 1 and 3. The mechanism of how the RCIC worked such a long time is thought to be due to balance between injected water from the RCIC pump and the supplied mixture of steam and water sent to the RCIC turbine. To confirm the RCIC working conditions and reproduce the measured plant properties, such as pressure and water level in the pressure vessel, we introduced a two-phase turbine driven pump model into SAMPSON. In the model, mass flow rate of water injected by the RCIC was calculated through turbine efficiency degradation the originated from the mixture of steam and water flowing to the RCIC turbine. To reproduce the drywell pressure, we assumed that the torus room was flooded by the tsunami and heat was removed from the suppression chamber to the sea water. Although uncertainties, mainly regarding behavior of debris, still remain because of unknown boundary conditions, such as alternative water injection by fire trucks, simulation results by SAMPSON agreed well with the measured values for several days after the scram.


Author(s):  
Tadashi Narabayashi ◽  
Yuuhei Sugano ◽  
Hiroki Imaeda ◽  
Go Chiba ◽  
Nobuaki Sato ◽  
...  

Fukushima Daiichi NPP accident would be terminated, if sufficient accident countermeasures, such as water proof door, mobile power, etc [1, 2]. In case of Europe, it had already installed the heat removal system and filtered containment venting system (FCVS) from the lessons of TMI and Chernobyl Accidents. The new regulatory standard in Japan, the filtered vent system (FCVS) should be installed, and prevent the radioactive material in case of the severe accident and the overpressure breakage prevention of a primary containment vessel (PCV) and also the robustization of the FCVS. The authors examined the severe accident process in the 2nd unit of Fukushima Daiichi NPS, and found the vent by FCVS should be done before water injection into the core. The PCV spray and water injection into the pedestal basement should be also the countermeasures to the severe accident. Countermeasures for an intentional aircraft collision should be installed too. Upon occurrence of a severe accident (SA), vent gas with radioactive fission products is blown out to a scrubbing pool through numerous venturi nozzles. Mist in steam moves upward to a metal fiber filter through a multi-hole baffle plate. After the mist is removed by that filter, radioactive methyl iodine (CH3I) is captured on the surface of a molecular sieve or AgX, made from zeolite particles with silver coating. A FCVS visualized test facility was installed at Hokkaido University. An AgX filter is used down-stream of the scrubbing pool and metal fiver filter. Thickness of AgX filter is very important parameter to obtain enough decontamination factor (DF). The DF for the radioactive iodine exceeds 10,000 at bed depth (AgX filter thickness) greater than 75mm.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Gilberto Espinosa-Paredes ◽  
Raúl Camargo-Camargo ◽  
Alejandro Nuñez-Carrera

The loss-of-coolant accident (LOCA) simulation in the boiling water reactor (BWR) of Laguna Verde Nuclear Power Plant (LVNPP) at 105% of rated power is analyzed in this work. The LVNPP model was developed using RELAP/SCDAPSIM code. The lack of cooling water after the LOCA gets to the LVNPP to melting of the core that exceeds the design basis of the nuclear power plant (NPP) sufficiently to cause failure of structures, materials, and systems that are needed to ensure proper cooling of the reactor core by normal means. Faced with a severe accident, the first response is to maintain the reactor core cooling by any means available, but in order to carry out such an attempt is necessary to understand fully the progression of core damage, since such action has effects that may be decisive in accident progression. The simulation considers a LOCA in the recirculation loop of the reactor with and without cooling water injection. During the progression of core damage, we analyze the cooling water injection at different times and the results show that there are significant differences in the level of core damage and hydrogen production, among other variables analyzed such as maximum surface temperature, fission products released, and debris bed height.


Author(s):  
Masanori Naitoh ◽  
Hiroaki Suzuki ◽  
Hidetoshi Okada

The Tohoku Region Pacific Coast Earthquake with magnitude 9.0 occurred at 2:46 PM of March 11th, 2011, followed by a huge Tsunami. The Fukushima Daiichi nuclear power station suffered serious damages from the Tsunami, involving core melt and release of large amount of fission products to an environment. The station blackout (SBO) occurred due to submergence of emergency equipment by the sea water. The isolation condenser (IC) was the only device for decay heat removal at the unit-1 of the Fukushima Daiichi nuclear power station after the reactor scram. The IC function was analyzed with a severe accident analysis code SAMPSON. The analysis results showed that (1) core melt resulting in RPV failure occurred since the IC operation was limited because it was not designed as a countermeasure to mitigate severe accident progression in Japan and (2) even assuming the continuous IC operation after the SBO to mitigate severe accident progression, the RPV failure occurred at 18:52, March 12th. However, since the alternate water injection by a fire engine was actually ready to start at 5:46, March 12th, which was earlier than calculated RPV failure time, the RPV failure could be prevented by continuous IC operation.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Taeseok Kim ◽  
Wonjun Choi ◽  
Joongoo Jeon ◽  
Nam Kyung Kim ◽  
Hoichul Jung ◽  
...  

During a hypothesized severe accident, a containment building is designed to act as a final barrier to prevent release of fission products to the environment in nuclear power plants. However, in a bypass scenario of steam generator tube rupture (SGTR), radioactive nuclides can be released to environment even if the containment is not ruptured. Thus, thorough mitigation strategies are needed to prevent such unfiltered release of the radioactive nuclides during SGTR accidents. To mitigate the consequence of the SGTR accident, this study was conducted to devise a conceptual approach of installing In-Containment Relief Valve (ICRV) from steam generator (SG) to the free space in the containment building and it was simulated by MELCOR code for numerical analysis. Simulation results show that the radioactive nuclides were not released to the environment in the ICRV case. However, the containment pressure increased more than the base case, which is a disadvantage of the ICRV. To minimize the negative effects of the ICRV, the ICRV linked to Reactor Drain Tank (RDT) and cavity flooding was performed. Because the overpressurization of containment is due to heat of ex-vessel corium, only cavity flooding was effective for depressurization. The conceptual design of the ICRV is effective in mitigating the SGTR accident.


2019 ◽  
Vol 107 (9-11) ◽  
pp. 965-977
Author(s):  
Yoshikazu Koma ◽  
Erina Murakami

Abstract The Fukushima Daiichi Nuclear Power Station, which is owned by the Tokyo Electric Power Company, was damaged by the great earthquake and tsunami on March 11, 2011, and serious contamination due to radioactive nuclides occurred. To investigate the waste management methodologies, contaminated materials were radiochemically analyzed. This paper reviews the analytical data concerning actinide elements. Contaminated water has accumulated in the basement of the reactor and other buildings, and actinide nuclides have been detected in this water. Actinides first get dissolved into the water inside the primary containment vessel, and then their concentration in the water decreases to a certain level with further flow. The contaminated water is chemically decontaminated; however, the actinide concentration does not decrease with time. This suggests that the actinides are continuously being supplied by the damaged fuel via slow dissolution. The dissolved transuranic (TRU) nuclides are recovered in the precipitate via a chemical treatment and are mostly removed from the water. Pu, Am, and Cm were detected in the topsoil at the site and appear to originate from the damaged fuel, whereas the detected U originates from natural sources. TRU nuclides slowly move in soil to deeper layers. The contamination of the rubble is nonuniform, and actinides are detected as well as fission products. Inside the reactor building of unit #2, the TRU nuclide concentration is comparatively higher near the boundary of the primary containment vessel, which experienced a fault during the accident. As for the vegetation, TRU nuclides were only found in fallen leaves near the reactor buildings.


Sign in / Sign up

Export Citation Format

Share Document