The Effect of Initial Condition of Melt Jet on the Jet Breakup Phenomenon in the Subcooled Water Pool

Author(s):  
Woo Hyun Jung ◽  
Hyun Sun Park ◽  
Kiyofumi Moriyama ◽  
Moo Hwan Kim

The melt jet breakup phenomenon in a pre-flooded reactor cavity during a severe accident is related to the debris bed coolability. It is important to predict the jet breakup length for the evaluation of the debris bed coolability. A large volume of works on the jet breakup length have been performed. However, the consistency between experiments and correlations was difficult to achieve. Some data follow the Saito correlation (include Froude number in the correlation) and others follow the Epstein correlation (doesn’t include Froude number). The separation of the jet breakup length correlation along the water subcooling was reported based on the experimental data using the low melting temperature materials in our previous works. Since the previous experiments show an unclear jet shape before entering the water pool which could be an uncertainty factor, a slide gate system for a clear jet shape was additionally installed. Experiments were conducted with the similar condition of previous work and different initial condition of melt jet. With a clear jet shape, the jet breakup length in the subcooled water show different tendency following the Saito correlation. To figure out the effect of the entry condition of the melt jet, the jet diameter and the method of estimating the jet breakup length are revisited. Our previo0us experiments show large uncertainties on the jet diameter, leading to the large discrepancy of the dimensionless jet breakup length. Also, early broken jet core is reported in subcooled water cases. Thus, the uncertain characteristics of the jet breakup length analysis is discussed in this paper including the jet diameter and the method to estimate the jet breakup length.

Author(s):  
Takayuki Suzuki ◽  
Hiroyuki Yoshida ◽  
Naoki Horiguchi ◽  
Sota Yamamura ◽  
Yutaka Abe

Abstract In the severe accident (SA) of nuclear reactors, fuel and components melt, and melted materials fall to a lower part of a reactor vessel. In the lower part of a reactor vessel, in some sections of the SAs, it is considered that there is a water pool. Then, the melted core materials fall into a water pool in the lower plenum as a jet. The molten material jet is broken up, and heat transfer between molten material and coolant may occur. This process is called a fuel-coolant interaction (FCI). FCI is one of the important phenomena to consider the coolability and distribution of core materials. In this study, the numerical simulation of jet breakup phenomena with a shallow pool was performed by using the developed method (TPFIT). We try to understand the hydrodynamic interaction under various, such as penetration, reach to the bottom, spread, accumulation of the molten material jet. Also, we evaluated a detailed jet spread behavior and examined the influence of lattice resolution and the contact angle. Furthermore, the diameters of atomized droplets were evaluated by using numerical simulation data.


Author(s):  
Takashi Wada ◽  
Yutaka Abe ◽  
Akiko Kaneko ◽  
Yuta Uchiyama ◽  
Hideki Nariai ◽  
...  

For the safety design of the Fast Breeder Reactor (FBR), the Post Accident Heat Removal (PAHR) is required when a hypothetical Core Disruptive Accident (CDA) occurs. In the PAHR, it is strongly required that the molten core material can be cooled down and solidified by the sodium coolant in the reactor vessel. There is high possibility for molten material to be ejected as a liquid jet into sodium coolant in the reactor vessel. In order to estimate whether the molten material jet is completely solidified by sodium coolant or not, it is necessary to understand the interaction between molten core material and coolant such as jet breakup and fragmentation behavior in coolant. The jet breakup behavior is the phenomenon that the front of molten material breaks up in coolant. To clarify the mechanism of jet breakup and fragmentation during the CDA for the FBR, it is necessary to understand the correlation between jet breakup lengths and size distribution of fragments when molten material jet interacting with coolant. The objective of the present study is to clarify the dominant factor of the jet breakup length and the size distribution of fragments experimentally. Molten jet of U-alloy 138 is injected into water as simulated core material and coolant by free-fall. The density ratio of core material and coolant is almost same as that of the real FBR system. The jet breakup behavior as interaction of molten material with coolant is observed with high speed video camera. Front velocity of the molten material jet is estimated by using the image processing technique. It suddenly decreases when the jet fall into the coolant. The jet breakup length estimated from observed images is compared with the breakup theories to understand the effect of experimental parameters for the jet breakup length. The solidified fragments are gathered and classified in size, and the mass in each size is measured. Median diameter is obtained from the mass distribution of the fragments. In comparison with interfacial instabilities, the median diameter of fragments shows the independent of relative velocity. The jet breakup lengths and median diameters compared with existing theories is discussed.


Author(s):  
Pei Shen ◽  
Wenzhong Zhou

Steam explosion is one of the consequences of fuel-coolant interactions in a severe accident. Melt jet fragmentation, which is the key phenomenon during steam explosion, has not been clarified sufficiently which prevents the precise prediction of steam explosion. The focus of this paper is on the numerical simulation of the melt jet behavior falling into a coolant pool in order to get a qualitative and quantitative understanding of initial premixing stage of fuel-coolant interaction. The objective of our first phase is the simulation of the fragmentation process and the estimation of the jet breakup length. A commercial CFD code COMSOL is used for the 2D numerical analysis employing the phase field method. The simulation condition is similar to our steam explosion test supported by the ALISA (Access to Large Infrastructure for Severe Accidents) project between European Union and China, and carried out in the KROTOS test facility at CEA, France. The simulation result is in relatively good agreement with the experimental data. Then the effect of the initial jet velocity, the jet diameter and the instability theory are presented. The preliminary data of melt jet fragmentation is helpful to understand the premixing stage of the fuel-coolant interaction.


Author(s):  
Shimpei Saito ◽  
Yuzuru Iwasawa ◽  
Yutaka Abe ◽  
Akiko Kaneko ◽  
Tetsuya Kanagawa ◽  
...  

Mitigative measures against the event of a core disruptive accident (CDA) are of the importance from the viewpoint of safety of a sodium-cooled fast reactor (SFR). If the CDA occurs, the so-called post-accident heat removal must be surely achieved. The present study focuses on the scenario that the molten materials are injected into the lower plenum as jets. The jet breakup behavior during the CDA will be very complicated. Therefore, a specialized study on the fundamental process during the jet breakup is believed to be an effective approach. The aim of this paper is to understand the fundamental process of hydrodynamic interaction of jet breakup and droplet formation Using the immiscible liquid-liquid system, water and silicon oil as the test fluids, visualization via high-speed videography was performed. From the visualization results, the breakup length and droplet diameter were measured by image processing. The experimental data were scaled with ambient Weber number. When the Weber number was smaller than 1, the droplet diameter was close to the nozzle diameter, and distribution of droplet size was not observed. When the Weber number exceeded 1, the breakup length became longer and the generated droplet diameter possessed a distribution with two peaks due to satellite droplet formation. In both cases, the droplet formed at the leading edge of jet. In case that Weber number is around 100, the droplets were formed by entrainment of interfacial wave at jet side. From the mass median diameter data, we can see that the increase of the Weber number caused the decrease of median diameter and the increase of the width of the distribution.


Author(s):  
Jun Ishikawa ◽  
Tomoyuki Sugiyama ◽  
Yu Maruyama

The Japan Atomic Energy Agency (JAEA) is pursuing the development and application of the methodologies on fission product (FP) chemistry for source term analysis by using the integrated severe accident analysis code THALES2. In the present study, models for the eutectic interaction of boron carbide (B4C) with steel and the B4C oxidation were incorporated into THALES2 code and applied to the source term analyses for a boiling water reactor (BWR) with Mark-I containment vessel (CV). Two severe accident sequences with drywell (D/W) failure by overpressure initiated by loss of core coolant injection (TQUV sequence) and long-term station blackout (TB sequence) were selected as representative sequences. The analyses indicated that a much larger amount of species from the B4C oxidation was produced in TB sequence than TQUV sequence. More than a half of carbon dioxide (CO2) produced by the B4C oxidation was predicted to dissolve into the water pool of the suppression chamber (S/C), which could largely influence pH of the water pool and consequent formation and release of volatile iodine species.


2019 ◽  
Vol 35 (6) ◽  
pp. 911-924 ◽  
Author(s):  
Yue Jiang ◽  
Hong Li ◽  
Chao Chen ◽  
Lin Hua ◽  
Daming Zhang

HighlightsThe hydraulic performance of the impact sprinkler with circular and non-circular nozzles were measured.A High-Speed Photography (HSP) technique was employed to extract the jet breakup process of the impact sprinkler.Two index equations of jet characteristic lengths and equivalent diameters of non-circular nozzles were fitted. Abstract. An experiment was carried out to investigate the hydraulic performance of an impact sprinkler by using circular and non-circular nozzles. A High-Speed Photography (HSP) technique was employed to extract the breakup process and flow behavior of low-intermediate pressure water jets issued from the different types of orifices. These orifices were selected by the principle of equal flowrate with the same pressure. Moreover, two characteristic lengths: the jet breakup length and the initial amplitude of surface wave were measured. It was found that the sprinkler with circular nozzles produced the largest radius of throw followed by square nozzles and regular triangular nozzles when the cone angle of nozzle and pressure were unchanged, while the sprinkler with regular triangular nozzle had the best variation trend of water distribution and combination uniformity coefficient. Regular triangular jets exhibited a higher degree in breakup and the shortest breakup length compared with the square jets and the circular jets. The initial amplitudes of surface waves of regular triangular jets were larger than the square jets and the circular jets with the same cone angle. Two index equations of jet characteristic lengths and equivalent diameters of both circular and non-circular orifices were fitted with a relative error of less than 10%, which means the fitting formulas were accurate. Keywords: Breakup length, Fitting formula, Hydraulic performance, Initial amplitude, Non-circular jets.


Author(s):  
Takayuki Suzuki ◽  
Hiroyuki Yoshida ◽  
Fumihisa Nagase ◽  
Yutaka Abe ◽  
Akiko Kaneko

In order to improve the safety of Boiling Water Reactor (BWR), it is required to know the behavior of the plant when an accident occurred as can be seen at Fukushima Daiichi nuclear power plant accident. Especially, it is important to estimate the behavior of molten core jet in the lower part of the containment vessel at severe accident. In the BWR lower plenum, the flow characteristics of molten core jet are affected by many complicated structures, such as control rod guide tubes, instrument guide tubes and core support plate. However, it is difficult to evaluate these effects on molten core jet experimentally. Therefore, we considered that multi-phase computational fluid dynamics approach is the best way to estimate the effects on molten core jet by complicated structure. The objective of this study is to develop the evaluation method for the flow characteristic of molten core jet including the effects of the complicated structures in the lower plenum. So we are developing a simulation method to estimate the behavior of molten core jet falling down through the core support plate to the lower plenum of the BWR. The method has been developed based on interface tracking method code TPFIT (Two Phase Flow simulation code with Interface Tracking). To verify and validate the applicability of the developed method in detail, it is necessary to obtain the experimental data that can be compared with detailed numerical results by the TPFIT. Thus, in this study, we are carrying out experimental works by use of multi-phase flow visualization technique. In the experiments, time series of interface shapes are observed by high speed camera and velocity profiles in/out of the jet will be measured by the PIV method. In this paper, the outline of the developing method based on the TPFIT was explained. And, the developing method was applied to preliminary experiment with/without modeled complicated structures. As the results, predicted interface shapes were almost agreed with measured data. However, predicted falling down velocity of the jet was lower than measured data. We considered causes of this underestimation and improved the method and simulation conditions to resolve this problem.


Author(s):  
Zidi Wang ◽  
Yuzuru Iwasawa ◽  
Tomoyuki Sugiyama

Abstract In a hypothetical severe accident in a light water reactor (LWR) nuclear power plant, there is a possibility that molten core released from the reactor vessel gets in contact with water in the containment vessel. In this so-called fuel-coolant interactions (FCIs) process, the melt jet will breakup into fragments, which is one of the important factors for a steam explosion, as a potential threat to the integrity of the containment vessel. The particle method could directly and easily capture the large deformed interfaces by particle motions, benefiting from its Lagrangian description and meshless framework. In order to investigate the melt-jet breakup with solidification processes, a multiphase particle method with arbitrary high order scheme is presented in this study. In addition, an interfacial particle shifting scheme is developed to suppress the unnatural particle penetration between different phases. The convergence rate with different order is firstly confirmed by a verification test in terms of both explicit and implicit calculations. Then, a transient heat conduction between two materials is carried out and quite good results are obtained. After that, a rising bubble benchmark is performed to show the feasibility of modelling for deformation and collapse. Improvements of clear interface are indicated compared with previous reported results. Two important multiphase instabilities, namely the Rayleigh-Taylor instability and the Kelvin-Helmholtz instability, are studied since they play important roles during the melt-jet breakup. The results achieved so far indicate that the developed particle method is capable to analyze the melt-jet breakup with heat transfer.


Sign in / Sign up

Export Citation Format

Share Document