Offshore Wind Farms for Hydrogen Production Subject to Uncertainties

Author(s):  
Nabil Kassem

Wind power is a source of clean, nonpolluting electricity, which is quite competitive, if installed at favorable wind sites, with fossil fuel and nuclear power generation. Wind power is an intermittent electricity generator; which does not provide electric power on an “as needed” basis. The major challenge in wind energy assessment is how accurately the wind energy can be predicted and the capital investment cost is estimated. Therefore, wind energy is subject to some uncertainties, which must be accounted for to provide meaningful and reliable estimates of performance and economic figures-of-merit. Off-peak power from wind farms can be utilized for hydrogen production using water electrolysis. This study applies methods of risk analysis to evaluate the simultaneous effect of multiple input uncertainties, and provide an assessment of the-techno-economic viability of offshore wind farms for electrolytic hydrogen production. The capacity factor of wind turbine has a dominant effect on the wind power economy.

2020 ◽  
Vol 207 ◽  
pp. 02013
Author(s):  
Cansev Genç ◽  
Abdulla Sakalli ◽  
Ivaylo Stoyanov ◽  
Teodor Iliev ◽  
Grigor Mihaylov ◽  
...  

This article analyses the development of wind energy in Turkey - the number and capacity of installed wind generators, as well as the generated electricity. It was established that the number of wind power plants is 99 with a total installed capacity of 3933 MW, and the amount of electricity produced by wind power plants is 17909.3 GWh / year. Turkey has been shown to have great potential for developing electricity generation from offshore wind farms. The increase in the number of offshore wind turbines in the coming years is expected to increase the relative share of renewable sources in the country’s energy mix, to contribute to the technological and industrial development of the regions, to produce electricity from renewable and environmentally friendly sources and to reduce the country’s energy dependence. It has been established that there are appropriate conditions in Turkey for the development of wind energy and preconditions have been created for achieving the target for promoting the use of renewable energy sources by 2023.


2018 ◽  
Vol 65 ◽  
pp. 05010
Author(s):  
Shamima Akter ◽  
Joon Kiat Loo ◽  
Mohammed Abdul Hannan

This study analyses the relationship among various climate factors and their effect on the wind power density available in a coastal region. Climate data from several offshore wind farms in the East Asian region is extracted to perform the calculations and analysis. Reasons for variations of climate parameters such as average wind speed, average temperature, air density, average pressure, average precipitation, average humidity and their influences on wind power generation are explored. It is expected that this study will help the investors to perform a feasibility study on the availability of wind energy at a certain nearshore area before setting up wind farms.


2016 ◽  
Vol 10 (2) ◽  
pp. 266-282 ◽  
Author(s):  
Kannan Govindan ◽  
Madan Shankar

Purpose The purpose of this paper is to evaluate the essential barrier and reveal the priority among common barriers to offshore wind energy in an Indian context with the assistance of the proposed framework. Design/methodology/approach Based on the proposed framework, a five-phase methodology was adapted to explore the essential barrier step by step. The common barriers, which were collected from the existing literatures through a systematic review, were further validated by field experts. The collected common barriers were evaluated with the assistance of the case industry’s field professionals through an analytical hierarchy process, a multi-criteria decision-making tool, to evaluate the barriers to Indian offshore wind energy. Findings Among the 12 common barriers to offshore wind energy, it is clear that “high capital cost” is the most essential barrier involved in the implementation of offshore wind energy farms in the Indian context. Practical implications This study reveals the importance of offshore wind power as a long-term profitable strategy to the case company within the Indian context. By addressing the essential barriers to the implementation of offshore wind farms, the Indian offshore wind system managers can train their employees to counteract the hindrances through the benchmarking of pioneering global offshore wind power developers such as Denmark and the UK. Further, this study provides useful suggestions to the Indian Government regarding policies for offshore wind energy; it also clearly projects the current status of the Indian offshore wind farm implementation. Originality/value This study assists Indian key stakeholders of offshore wind energy by indicating the essential barrier in an Indian context; they can remove the particular barrier instead of focusing on others that previous studies have identified. Further, this study brings out the importance of offshore wind power in an Indian context, which can urge stakeholders to invest more in offshore wind farms.


2021 ◽  
Vol 55 (4) ◽  
pp. 72-87
Author(s):  
Travis Miles ◽  
Sarah Murphy ◽  
Josh Kohut ◽  
Sarah Borsetti ◽  
Daphne Munroe

Abstract The U.S. East Coast has 1.7 million acres of federal bottom under lease for the development of wind energy installations, with plans for more than 1,500 foundations to be placed. The scale of these wind farms has the potential to alter the unique and delicate oceanographic conditions along the expansive Atlantic continental shelf, a region characterized by a strong seasonal thermocline that overlies cold bottom water, known as the “Cold Pool.” Strong seasonal stratification traps cold (typically less than 10°C) water above the ocean bottom sustaining a boreal fauna that represents vast fisheries, including the most lucrative shellfish fisheries in the United States. This paper reviews the existing literature and research pertaining to the ways in which offshore wind farms may alter processes that establish, maintain, and degrade stratification associated with the Cold Pool through vertical mixing in this seasonally dynamic system. Changes in stratification could have important consequences in Cold Pool setup and degradation, processes fundamental to high fishery productivity of the region. The potential for these multiple wind energy arrays to alter oceanographic processes and the biological systems that rely on them is possible; however, a great deal of uncertainty remains about the nature and scale of these interactions. Research should be prioritized that identifies stratification thresholds of influence, below which turbines and wind farm arrays may alter oceanographic processes. These should be examined within context of spatial and seasonal dynamics of the Cold Pool and offshore wind lease areas to identify potential areas of further study.


Author(s):  
Evgenii Ignatev ◽  
Galina Deryugina ◽  
Htet Myat Htoon ◽  
Mikhail Tyagunov

One of Myanmar's problems is energy shortage. Partially, energy shortage can possibly be decreased by the construction of sizeable grid-connected offshore wind farms. Eight prospective construction sites were selected and wind turbine models chosen. This chapter describes the method for determining the optimal composition of the wind farms complex, consisting of several offshore wind farms located at a considerable distance from each other in areas with significant wind regime asynchrony. To illustrate this method, the optimal composition with an installed capacity of 47.6 MW and located off Myanmar's west coast is defined.


2020 ◽  
Vol 12 (14) ◽  
pp. 5761 ◽  
Author(s):  
Chakib El Mokhi ◽  
Adnane Addaim

Wind energy is currently one of the fastest-growing renewable energy sources in the world. For this reason, research on methods to render wind farms more energy efficient is reasonable. The optimization of wind turbine positions within wind farms makes the exploitation of wind energy more efficient and the wind farms more competitive with other energy resources. The investment costs alone for substation and electrical infrastructure for offshore wind farms run around 15–30% of the total investment costs of the project, which are considered high. Optimizing the substation location can reduce these costs, which also minimizes the overall cable length within the wind farm. In parallel, optimizing the cable routing can provide an additional benefit by finding the optimal grid network routing. In this article, the authors show the procedure on how to create an optimized wind farm already in the design phase using metaheuristic algorithms. Besides the optimization of wind turbine positions for more energy efficiency, the optimization methods of the substation location and the cable routing for the collector system to avoid cable losses are also presented.


2003 ◽  
Vol 27 (4) ◽  
pp. 239-256 ◽  
Author(s):  
A G Dutton

Hydrogen is a leading contender to become an alternative to fossil fuel for transport and for heat and power systems. The potential for the integration of water electrolysis systems in land based and offshore wind farms is explored and compared with the conventional alternative – steam reforming of methane. Depending on the specific production technology, hydrogen can displace fossil fuels and so reduce or completely remove the emission of carbon dioxide and other pollutants. This paper examines the principal technologies for producing hydrogen and shows how the eventual choice is likely to depend as much on political and legislative factors as on economic criteria.


2012 ◽  
Vol 36 (1) ◽  
pp. 69-80 ◽  
Author(s):  
John Olav Giæver Tande ◽  
Magnus Korpås ◽  
Kjetil Uhlen

At many locations with excellent wind conditions the wind farm development is hindered by grid issues. Conservative assumptions are often applied that unnecessarily limits the wind power installation. This paper shows that significantly more wind power can be allowed by taking proper account of the wind power characteristics and facilitating coordinated power system operation. A systematic approach is developed for assessing grid integration of wind farms subject to grid congestions. The method is applied to a case of connecting offshore wind farms to regional grid with hydro generation (380 MW) and loads (75–350 MW). The tie to the main grid is via a corridor with limited capacity (420 MW). With conservative assumptions (i.e. no changes in scheduled hydro generation or control of wind power output) the wind power installation is limited to 115 MW. The system operation is simulated on an hourly basis for multiple years taking into account the stochastic variations of wind speed and hydro inflow as well as the geographical distribution of wind farms. The simulation uses a control strategy for coordinated power system operation that maximises wind penetration. By using the developed methodology the wind power capacity can be increased from 115 MW to at least 600 MW with relatively little income reduction from energy sales compared to a case with unlimited grid capacity. It is concluded that coordinated operation allows for the integration of surprisingly large amounts of wind power. In order to realize the increase in transfer capability, it is essential to take account of the power system flexibility and the stochastic and dispersed nature of wind power. The presented methodology facilitates this and represents a rational approach for power system planning of wind farms.


2013 ◽  
Vol 14 (2) ◽  
pp. 235-243 ◽  

Wind energy offers significant potential for greenhouse gas emissions reductions. Most applications have been developed onshore but the planning and siting conflicts with other land uses have created considerable interest and motivated research to offshore wind energy establishments. In this paper, a systematic methodology in order to investigate the most efficient areas of offshore wind farms’ siting in Greece is performed, integrating multi-criteria decision making (MCDM) methods and Geographic Information Systems (GIS) tools. In the first level of analysis, all coastal areas that don’t fulfill a certain set of criteria (wind velocity, protected areas, water depth) are identified with the use of Geographical Information Systems (GIS) and excluded from further analysis. The Analytical Hierarchy Process is performed in the evaluation phase and pairwise comparisons provide the most appropriate sites to locate offshore wind farms. Information concerning evaluation criteria (average wind velocity, distance to protected areas, distance to ship routes, distance to the shore and distance of possible connection to the existing electricity network) is retrieved through GIS, eliminating the subjectivity in judgments. The whole methodology contributes to the portrait of the geographic analysis and stands as the last image of the space characteristics suitable for offshore wind farms.


Formulation of the problem. Ukraine's energy sector is import-dependent, and one of the country’s sustainable development goals until 2030 is to ensure access to affordable, reliable, sustainable and modern energy sources. The wind potential of the mainland of our country has been thoroughly studied, so the focus of our interest is water areas, which are promising for the development of offshore wind energy. Offshore wind farms in Ukraine could improve the environmental situation and considerably contribute to the decarbonization of domestic energy. That is why the study considers the opportunity of offshore wind farms installation in the Sea of Azov. Methods. The analysis of literary and cartographic sources has been carried out. Mathematical methods have been used to calculate energy indicators. Using geoinformation modeling, taking into account limiting factors, suitable for the installation of offshore wind farms areas have been identified in the Sea of Azov. The purpose of the article is to geographically analyze the wind energy potential of the Sea of Azov with further assessment of the suitability of areas for the offshore wind farms location. Results. Our research has shown that the installation of offshore wind farms is appropriate in the Sea of Azov, because many areas are characterized by average annual wind speed above 6 meters per second. The most promising areas are the northern and northeastern coasts, where wind speed at different altitudes ranges from 8 to 9.3 meters per second. At altitudes of 50, 100 and 200 m, under the action of limiting factors, the most promising for offshore wind turbines areas are reduced by 8–22%. As considered limiting factors (territorial waters, nature protection objects, settlements and airports) have identical influence regardless of height, it is more effective to install wind turbines with a tower height of more than 100 m in the waters of the Sea of Azov. Interdisciplinary research is needed for the final answer on the effectiveness of offshore wind turbines in the Sea of Azov. Scientific novelty and practical significance. The results of the analysis of the wind energy potential of the Sea of Azov have been given, the tendency of its growth from the west to the east has been revealed. Attention has been paid to the method of geoinformation modeling of the location of offshore wind farms taking into account limiting factors. Maps of wind speed, potential of electricity generated by a single wind turbine and suitability of areas of the Sea of Azov for the location of offshore wind farms at an altitude of 200 m above sea level have been presented. These data can be used by designers of wind energy facilities as a basis for determining the optimal power of wind turbines and the type of energy for a particular area of the Sea of Azov.


Sign in / Sign up

Export Citation Format

Share Document