2006 ◽  
Vol 129 (2) ◽  
pp. 430-435 ◽  
Author(s):  
V. Dunaevsky ◽  
J. Rudzitis

This technical brief clarifies origins of the piston ring conformability bounds presented by Dunaevsky (1990, Tribol. Trans. 33(1), pp. 33–40) and provides their correct expression. The subject has strong practical significance in the field of piston engines and compressors, and it is currently getting additional prominence due to stringent emission regulations. The bounds stem from an earlier version, developed by the authors using a semi-empirical approach, and published in the 1970s in Russian technical journals. A semi-empirical background of the bounds was inadvertently missed in the aforementioned Tribology Transactions’ publication. This fact, and the virtual inaccessibility of Russian sources to the English reader, interfere with the proper use of the bounds and cloud their authorship. In this technical brief, the correct expression of these conformability bounds, the development process, and uses are highlighted.


Author(s):  
Yunchao Qiu ◽  
Qian Zou ◽  
Gary C. Barber ◽  
Harold E. McCormick ◽  
Dequan Zou ◽  
...  

A new wear model for piston ring and cylinder bore system has been developed to predict wear process with high accuracy and efficiency. It will save time and cost compared with experimental investigations. Surfaces of ring and bore were divided into small domains and assigned to corresponding elements in two-dimensional matrix. Fast Fourier Transform (FFT) and Conjugate Gradient Method (CGM) were applied to obtain pressure distribution on the computing domain. The pressure and film thickness distribution were provided by a previously developed ring/bore lubrication module. By changing the wear coefficients of the ring and bore with accumulated cycles, wear was calculated point by point in the matrix. Ring and bore surface profiles were modified when wear occurred. The results of ring and bore wear after 1 cycle, 10 cycles and 2 hours at 3600 rpm were calculated. They coincided well with the general tendency of wear in a ring and bore system.


Author(s):  
Yibin Guo ◽  
Wanyou Li ◽  
Dequan Zou ◽  
Xiqun Lu ◽  
Tao He

In this paper a mixed lubrication model considering lubricant supply conditions on cylinder bore has been developed for the piston ring lubrication. The numerical procedures of both fully flooded and starved lubrication were included in the model. The lubrication equations and boundary conditions at the end of strokes were discussed in detail. The effects of piston ring design parameters, such as ring face profile and ring tension, on oil film thickness, friction force and power loss under fully flooded and starved lubrication conditions due to available lubricant supply on cylinder bore were studied. The simulation results show that the oil available in the inlet region of the oil film is important to the piston ring friction power loss. With different ring face crown heights and tensions, the changes of oil film thickness and friction force were apparent under fully flooded lubrication, but almost no changes were found under starved lubrication except at the end of a stroke. In addition, the oil film thickness and friction force were affected evidently by the ring face profile offsets under both fully flooded and starved lubrication conditions, and the offset towards the combustion chamber made a large contribution to forming thicker oil film during the expansion stroke. So under different lubricant supply conditions on the cylinder bore, the ring profile and tension need to be adjusted to reduce the friction and power loss. Moreover, the effects of lubricant viscosity, surface composite roughness, and engine operating speed on friction force and power loss were also discussed.


Sign in / Sign up

Export Citation Format

Share Document