Characterization and Tribological Evaluation of 1-Benzyl-3-Methylimidazolium Bis(trifluoromethylsulfonyl)imide as Neat Lubricant and Oil Additive

Author(s):  
Dinesh G. Bansal ◽  
Jun Qu ◽  
Bo Yu ◽  
Huimin Luo ◽  
Sheng Dai ◽  
...  

Selected physical and chemical properties and tribological data for a newly-developed, imidazolium-based ionic liquid (IL) are presented. The IL is soluble in the SAE 5W-30 oil up to a certain weight percentage, and is as a promising candidate for use in lubrication applications, either in its neat version or as an oil additive. Characterization of the IL included dynamic viscosity at different temperatures, corrosion effects on cast iron cylinder liners, and thermal stability analysis. The tribological performance was evaluated using a reciprocating ring-on-liner test arrangement. When used in neat version this IL demonstrated friction coefficient comparable to a fully formulated engine oil, and when used as an oil additive it produced less wear.

2006 ◽  
Vol 530-531 ◽  
pp. 715-719
Author(s):  
L.C. Morais ◽  
Jo Dweck ◽  
E.M. Gonçalves ◽  
Pedro M. Büchler

The aim of this paper was to study the characterization of sludge affected by different thermal treatment, on selected physical and chemical properties. Sludge incinerated ash has been fired at different temperatures. This material was fired at 1050 °C for 3 h and until a peak of 1010°C. After thermal treatment the ash were screened at 200 mesh. The ash was characterized by X-ray fluorescence and trace elements like Cr, Pb, Zn, Cu, and some oxides like quartz(SiO2), Al2O3, P2O5, Fe2O3 were found. Scanning electron microscopy (SEM) has shown one change of particle between 2μm at 90μm and apparent porosity.


1934 ◽  
Vol 30 (2) ◽  
pp. 216-224
Author(s):  
P. C. Ho

Owing to its physical and chemical properties being greatly different from those of any of the liquids which have hitherto been used in the Wilson cloud chamber, mercury has been used in the experiments described in this paper and the condensation phenomena of its vapour at different temperatures observed. Before constructing the apparatus it was considered necessary to get from theoretical considerations some idea about the magnitude of the critical supersaturation for mercury vapour in equilibrium with a drop carrying unit charge. Assuming that J. J. Thomson's formula.where s is the supersaturation of mercury vapour in equilibrium with a drop of mercury of radius a, charge e, density σ and surface tension T, the value of which is assumed here to be independent of the radius of the drop, K the specific inductive capacity of the dielectric surrounding the drop, and R the gas constant for one gramme of weight, all at temperature θ, can be applied to the present problem, this critical supersaturation sm is given by the formula


Química Nova ◽  
2021 ◽  
Author(s):  
Kamila Ody ◽  
João Jesus ◽  
Carlos Cava ◽  
Anderson Albuquerque ◽  
Ary Maia ◽  
...  

ASSESSMENT OF THE ELECTRONIC STRUCTURE OF THE MONOCLINIC PHASE OF NIOBIUM OXIDE BASED ON THE USE OF DIFFERENT DENSITY FUNCTIONALS. Niobium oxides, Nb2O5, are considered semiconductor materials with very attractive physical and chemical properties for applications in many areas, such as catalysis, sensors, medical, aerospace, etc. Especially, the characterization of Nb2O5-based nanostructures with monoclinic structure has received much attention in recent years. However, despite the great importance of this system, some of its fundamentals properties are still not fully understood. Hence, this work aims to apply the theoretical methodologies through Density Functional Theory (DFT) calculations in periodic models based on the use of different density functionals (like B1WC, B3PW, B3LYP, PBE0, PBESOL0, SOGGAXC, and WC1LYP) to investigate the physical and chemical properties of the monoclinic structure of Nb2O5. The band structures, energy bandgap, density of state, and vibrational properties, as well as order-disorder effects on the monoclinic structure of Nb2O5 are investigated in this study. Our theoretical results show a better agreement with experimental data for the B3LYP functional and hence lead to new perspectives on the deeper physicochemical understanding of the monoclinic Nb2O5. From these computational tools, it is possible to unravel the relations between structure and properties, which may contribute to the future development of new devices and applications based on these materials.


2019 ◽  
Vol 40 (6) ◽  
pp. 2581
Author(s):  
Adriana Cristina Bordignon ◽  
Maria Luiza Rodrigues de Souza ◽  
Eliane Gasparino ◽  
Edson Minoru Yajima ◽  
Jesuí Vergílio Visentainer ◽  
...  

After Nile tilapia skin was preserved using the methods of freezing and dry salting, characteristics of skin gelatin were evaluated with regard to yield, rheological features and physical and chemical properties. Preservation was performed after filleting, at which time skins were either frozen (-18°C) for 7 days or salted (25°C) for 7 days. Although no differences (p > 0.05) were observed with respect to humidity, protein, lipid, ash and calcium levels, gelatin from salted skins had a higher concentration of iron relative to frozen skins. Further, twenty-three fatty acids were detected in salted skins compared with merely three found in skin derived gelatin. Of amino acids found, glycine, alanine, proline and arginine were the most abundant. Hydroxyproline abundance in salted and frozen skin gelatin were 8.76% and 8.71%, respectively. In addition, salted skin gelatins had a greater accumulation of saturated fatty acids and lower rates of monounsaturated fatty acids. Salted skin gelatin had the highest yield (18g × 100g-1), gel strength (200 g) and viscosity (19.02mPas) when compared to the yield (17g × 100g-1), gel strength (12.7g) and viscosity (9.16 mPas) of frozen skins. Results show that gelatin from dry salted skin had the best yield and also had relatively better rheological properties, more iron, and better coloration relative to gelatin obtained from frozen skins of Nile tilapia.


Author(s):  
Juliany Barbosa de Pinho ◽  
Aloisio Bianchini ◽  
Pedro Silvério Xavier Pereira ◽  
Letycia Cunha Nunes ◽  
Rodrigo Fernandes Daros ◽  
...  

From the pyrolysis process, biochar is a carbon rich and recalcitrant organic material with potential for long term carbon sequestration because of its aromatic structure. However, the physical and chemical properties of the biochar vary due to the diversity of raw material and the conditions of production. The present study aimed to evaluate the biochar from the sugarcane bagasse at different temperatures and under two conditions of pyrolysis. The biochar was produced at two final temperatures 200°C (1 hour); 250°C (1h) and 250°C (2h), with pyrolysis of an oxidizing and non-oxidizing atmosphere for both. PH, cation exchange capacity (CTC), carbon content (C), Nitrogen (N), hydrogen (H), H:C, C:N and ash ratios were evaluated. The contents of C, H, N and the atomic ratios H:C and C:N were higher in Biochar produced in a non-oxidizing atmosphere (BNO). However, the content of ash, pH and CTC were higher in Biochar produced in oxidizing atmospheres (BO). One can conclude the direct influence of the pyrolysis condition.


1987 ◽  
Vol 65 (4) ◽  
pp. 884-887 ◽  
Author(s):  
A. J. Sillman

The blue-sensitive visual pigment of the green rods of Bufo marinus was extracted with digitonin. The pigment is present in an amount equal to about 11% that of rhodopsin. It is based on vitamin A1 and exhibits a maximum absorbance of 433 nm. The pigment is labile and readily destroyed by hydroxylamine, regenerates to a much greater degree than does rhodopsin, and is more effectively extracted from the membrane than is rhodopsin. The green rod pigment of Bufo marinus appears to share the same physical and chemical properties as the green rod pigments of other amphibians. Therefore, the results of electrophysiological studies on the green rods of Bufo marinus can be more confidently generalized to other species. The results are discussed in terms of the blue phototaxis that is characteristic of many amphibians.


2014 ◽  
Vol 16 (29) ◽  
pp. 15053-15067 ◽  
Author(s):  
L. Treuel ◽  
K. A. Eslahian ◽  
D. Docter ◽  
T. Lang ◽  
R. Zellner ◽  
...  

Whilst the physical and chemical properties of nanoparticles in the gas or idealized solvent phase can nowadays be characterized with sufficient accuracy, this is no longer the case for particles in the presence of a complex biological environment.


2017 ◽  
Vol 2 (1) ◽  
pp. 35
Author(s):  
Santi Puspitasari ◽  
Hani Handayani ◽  
R. Siti Noviani Melinda ◽  
Yoharmus Syamsu

Optimization of Ash Content on the Synthesize of Vulcanized Jarak Pagar (Jatropha curcas) Oil         Developments in the preparation of rubber compound formulations should be followed by a rubber compounder, especially in modifying the formula. Rubber compound composed of rubber as an elastomer and its chemical. Each ingredient has a specific function and influence to the properties of rubber articles. The research studied the formulation of vulcanized oil of Jatropha curcas to obtain the best quality in terms of ash content. The experiment begins with the characterization of Jatropha curcas oil and testing of ash content of each component in the formulation of vulcanized Jatropha curcas oil. The results was used as the basis for formulation of vulcanized Jatropha curcas oil components. Vulcanized Jatropha curcas oil was synthesized at the laboratory scale (100 g oil / batch) at 140OC temperature, agitation speed of 100 rpm, and the variation of dose Na2CO3 and ZnO (0.25; 0.50, and 0.75 pho). Vulcanized Jatropha curcas oil obtained were analyzed for visualization of physical and chemical properties. The experimental results showed that the lowest of ash content of vulcanized Jatropha curcas oil was of 1.24% obtained from the reaction by the addition of 0,25 pho of Na2CO3 and 0,50 pho of ZnO. This dose was defined as the optimal dose because it gived the ash content that meets the requirements of commercial vulcanized oil (max 1.5%).Keywords: Rubber compound, elastomer, Jatropha curcas oil ABSTRAK        Perkembangan teknik formulasi dalam penyusunan kompon karet harus dapat diikuti oleh rubber compounder terutama dalam memodifikasi formula tersebut. Kompon karet tersusun atas karet sebagai elastomer dan bahan kimianya. Setiap bahan kimia karet memiliki fungsi dan pengaruh yang spesifik terhadap sifat barang jadi karet. Pada penelitian ini dipelajari formulasi bahan dalam pembuatan minyak tervulkanisasi agar diperoleh mutu terbaik ditinjau dari segi kadar abu. Percobaan diawali dengan karakterisasi minyak jarak pagar dan pengujian kadar abu setiap komponen dalam formulasi minyak jarak pagar tervulkanisasi. Hasilnya digunakan sebagai dasar penyusunan formulasi komponen minyak jarak pagar tervulkanisasi. Minyak jarak pagar tervulkanisasi dibuat pada skala laboratorium (100 g minyak/batch) pada suhu 140oC, kecepatan pengadukan 100 rpm, dan variasi dosis Na2CO3 serta ZnO (0,25; 0,50; dan 0,75 bsm). Minyak jarak pagar yang diperoleh dianalisis visualisasi fisik dan sifat kimianya. Hasil percobaan menunjukkan bahwa kadar abu minyak jarak pagar tervulaknisasi terendah sebesar 1,24% diperoleh dari reaksi dengan penambahan 0,25 bsm Na2CO3 dan 0,50 bsm ZnO. Dosis ini ditetapkan sebagai dosis optimal karena memberikan kadar abu yang memenuhi persyaratan minyak nabati tervulkanisasi komersial (maks 1,5%).Kata kunci: Kompon karet, elastomer, minyak jarak pagar


Sign in / Sign up

Export Citation Format

Share Document