Nonlinear Modeling of 3D Open-Cell Foams

1999 ◽  
Author(s):  
Yu Wang ◽  
Alberto M. Cuitiño

Abstract In this article, we present a hyperelastic model for light and compliant open cell foams with an explicit correlation between microstructure and macroscopic behavior. The model describes a large number of three dimensional structures with regular and irregular cells. The theory is based on the formulation of strain-energy function accounting for stretching which is the main deformation mechanism in this type of materials. Within the same framework, however, bending, shear and twisting energies can also be incorporated. The formulation incorporates nonlinear kinematics which traces the evolution of the structure during loading process and its effects on the constitutive behavior, including the cases where configurational transformations are present leading to non-convex strain-energy functions. Also nonlinear material effects at local or beam level are introduced to accommodate a wide range of different material behaviors. Since the micromechanical formulation presented here has explicit correlation with the foam structure, it preserves in the constitutive relation the symmetries or directional properties of the corresponding structures, including the cases of re-entrant foams which exhibit negative Poisson’s ratio effects. The model captures the central features exhibit by these materials. Predictions of the model for macroscopic uniaxial strain are presented in this article.

Author(s):  
Rana Rezakhaniha ◽  
Edouard Fonck ◽  
Nikos Stergiopulos

The vessel wall exhibits relatively strong nonlinear properties and undergoes wide range of deformations. These characteristics make the identification of a strain energy function (SEF), the preferred method to describe the complex nonlinear elastic properties of the vascular tissue. None of the currently proposed structural models succeeded in describing accurately and simultaneously both the pressure-radius (Pro) and pressure-longitudinal force (P-Fz) curves. We hypothesized that the shortcomings of current models are partly due to unaccounted anisotropic properties of elastin.


1991 ◽  
Vol 58 (2) ◽  
pp. 376-381 ◽  
Author(s):  
W. E. Warren ◽  
A. M. Kraynik

A constitutive model for the nonlinear elastic behavior of isotropic low-density opencell foams with three-dimensional structure is formulated in terms of a strain energy function. The theory is based on micromechanical analysis of an idealized tetrahedral unit cell of arbitrary orientation that contains four half-struts joining at equal angles. The force-displacement relations for each strut are expressed by compliances for bending and stretching that do not depend on the magnitude of applied force. Contributions to the strain energy from large deformation effects are assumed to depend on strut reorientation and stretching, and are determined by analyzing a pin-jointed structure. The analysis is considered to be valid for finite strains below the onset of yielding associated with strut buckling.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


1983 ◽  
Vol 105 (3) ◽  
pp. 268-274 ◽  
Author(s):  
C. J. Chuong ◽  
Y. C. Fung

A three-dimensional stress-strain relationship derived from a strain energy function of the exponential form is proposed for the arterial wall. The material constants are identified from experimental data on rabbit arteries subjected to inflation and longitudinal stretch in the physiological range. The objectives are: 1) to show that such a procedure is feasible and practical, and 2) to call attention to the very large variations in stresses and strains across the vessel wall under the assumptions that the tissue is incompressible and stress-free when all external load is removed.


1999 ◽  
Vol 67 (1) ◽  
pp. 17-21 ◽  
Author(s):  
S. Doll ◽  
K. Schweizerhof

To describe elastic material behavior the starting point is the isochoric-volumetric decoupling of the strain energy function. The volumetric part is the central subject of this contribution. First, some volumetric functions given in the literature are discussed with respect to physical conditions, then three new volumetric functions are developed which fulfill all imposed conditions. One proposed function which contains two material parameters in addition to the compressibility parameter is treated in detail. Some parameter fits are carried out on the basis of well-known volumetric strain energy functions and experimental data. A generalization of the proposed function permits an unlimited number of additional material parameters.  Dedicated to Professor Franz Ziegler on the occasion of his 60th birthday. [S0021-8936(00)00901-6]


1993 ◽  
Vol 115 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Yun Ling ◽  
Peter A. Engel ◽  
Wm. L. Brodskey ◽  
Yifan Guo

The main purpose of this study was to determine a suitable strain energy function for a specific elastomer. A survey of various strain energy functions proposed in the past was made. For natural rubber, there were some specific strain energy functions which could accurately fit the experimental data for various types of deformations. The process of determining a strain energy function for the specific elastomer was then described. The second-order invariant polynomial strain energy function (James et al., 1975) was found to give a good fit to the experimental data of uniaxial tension, uniaxial compression, equi-biaxial extension, and pure shear. A new form of strain energy function was proposed; it yielded improved results. The equi-biaxial extension experiment was done in a novel way in which the moire techniques (Pendleton, 1989) were used. The obtained strain energy functions were then utilized in a finite element program to calculate the load-deflection relation of an electrometric spring used in an electrical connector.


2004 ◽  
Vol 77 (2) ◽  
pp. 257-277 ◽  
Author(s):  
Y. Shen ◽  
K. Chandrashekhara ◽  
W. F. Breig ◽  
L. R. Oliver

Abstract Rubber hyperelasticity is characterized by a strain energy function. The strain energy functions fall primarily into two categories: one based on statistical thermodynamics, the other based on the phenomenological approach of treating the material as a continuum. This work is focused on the phenomenological approach. To determine the constants in the strain energy function by this method, curve fitting of rubber test data is required. A review of the available strain energy functions based on the phenomenological approach shows that it requires much effort to obtain a curve fitting with good accuracy. To overcome this problem, a novel method of defining rubber strain energy function by Feedforward Backpropagation Neural Network is presented. The calculation of strain energy and its derivatives by neural network is explained in detail. The preparation of the neural network training data from rubber test data is described. Curve fitting results are given to show the effectiveness and accuracy of the neural network approach. A material model based on the neural network approach is implemented and applied to the simulation of V-ribbed belt tracking using the commercial finite element code ABAQUS.


2005 ◽  
Vol 29 (3) ◽  
pp. 459-475
Author(s):  
Hamid Ghaemi ◽  
A. Spence ◽  
K. Behdinan

This study was carried out to develop a compressible pseudo-strain energy function that describes the mechanical behavior of rubber-like materials. The motivation for this work was two fold; first was to define a single-term strain energy function derived from constitutive equations that can describe the mechanical behavior of rubber-like materials and taking into account the coupling between principal stretches and the nearly incompressibility characteristic of elastomers. Second was to implement this strain energy function into the Finite Element Method (FEM) to study the suitability of the model in FEM. A one-term three-dimensional strain energy function based on the principal stretch ratios was proposed. The three dimensional constitutive function was then reduced to describe the behavior of rubber-like materials under biaxial and uniaxial loading condition based on the membrane theory. The work presented here was based on the decoupling of the strain density function into a deviatoric and a volumetric part. Using pure gum, GMS-SS-A40, uniaxial and equi-biaxial experiments were conducted employing different strain rate protocols. The material was assumed to be isotropic and homogenous. The experimental data from uniaxial and biaxial tests were used simultaneously to determine the material parameters of the proposed strain energy function. A GA curve fitting technique was utilized in the material parameter identification. The proposed strain energy function was compared to a few well-known strain energy functions as well as the experimental results. It was determined that the proposed strain energy function predicted the mechanical behavior of rubber-like material with greater accuracy as compared to other models both analytical and numerical results.


2019 ◽  
Vol 11 (09) ◽  
pp. 1950084 ◽  
Author(s):  
Sara Sheikhi ◽  
Mohammad Shojaeifard ◽  
Mostafa Baghani

In this research, an incompressible, isotropic, nonlinear elastic rectangular block and a circular cylindrical sector are studied under bending and straightening moments, respectively. Analytical approaches are presented on implementing of the left Cauchy–Green tensor and Cauchy stresses. In addition, finite element analysis of both problems is carried out using UHYPER user-defined subroutine in ABAQUS to verify the analytical methods. Four different invariant-based strain energy functions, including neo-Hookean, Mooney–Rivlin, Arruda–Boyce, and recently proposed polynomial Exp-Exp models, are examined, and the results are compared. Material parameters of silicon rubber for the strain energy functions are identified by applying an optimization procedure. Finite element method results confirmed the analytical approach with great compatibility. Results showed that the length of the unbent beam does not affect the stress. Likewise, the initial angle of curved structure does not affect the unbending moment and stresses. Moreover, the Exp-Exp model had a slightly different result rather than other strain energies, which means that this model is more conservative than its counterparts. Furthermore, the Exp-Exp strain energy function is calibrated for tissue-like phantom and is compared with experimental data.


Sign in / Sign up

Export Citation Format

Share Document