Piezo Actuator Hybrid Modeling for Nonlinear Inverse Control in Diamond Turning

1999 ◽  
Author(s):  
Dongwoo Song ◽  
C. James Li

Abstract This paper describes a micro-positioning system based on piezo actuators and a spring mechanism, and a hybrid hysteresis model integrating a neural network and Preisach model to identify the inverse dynamics of the micro-positioning system. To improve the workpiece form accuracy in diamond turning, feedforward control using the hybrid inverse model and feedback PID control were applied individually and in combination. The performance of these controllers are compared in actual cutting tests.

Author(s):  
Wei Zhu ◽  
Feifei Liu ◽  
Fufeng Yang ◽  
Xiaoting Rui

A controller composed of a feed-forward loop based on a novel dynamic Prandtl–Ishlinskii (P-I) model and a PID feedback control loop is developed to support a 3-dimensional piezo-driven micro-positioning system for high-bandwidth tracking control. By considering the dynamic characteristics of the power amplifier, the dynamic P-I model can accurately describe the rate-dependent hysteresis of piezoelectric stack actuators (PSAs). To ensure that the hysteresis model is independent of system load, the P-I hysteresis operator in that model characterizes the relationship between the output force and the input voltage of PSAs. The dynamics equation of the mechanical is established by using the cutoff modal method. The feedforward control is designed based on the dynamic hysteresis model to reduce the rate-dependent hysteresis. The PID control is incorporated with the feedforward control to increase the tracking accuracy. Experimental results indicate that the controller can overcome the hysteresis efficiently and preserve good positioning accuracy in 1–100 Hz bandwidth. Just by introducing the dynamic characteristics of the power amplifier, which can be expressed as a first-order differential equation, the P-I model can accurately describe the rate-dependent hysteresis of the PSA, which provides a simple method to describe and control piezoelectric actuators and piezo-driven systems in a wide frequency.


1993 ◽  
Vol 115 (4) ◽  
pp. 720-723 ◽  
Author(s):  
C. James Li ◽  
Homayoon S. M. Beigi ◽  
Shengyi Li ◽  
Jiancheng Liang

This paper presents a learning self-tuning (LSTR) regulator which improves the tracking performance of itself while performing repetitive tasks. The controller is a self-tuning regulator based on learning parameter estimation. Experimentally, the controller was used to control the movement of a nonlinear piezoelectric actuator which is a part of the tool positioning system for a diamond turning lathe. Experimental results show that the controller is able to reduce the tracking error through the repetition of the task.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ziqiang Chi ◽  
Minping Jia ◽  
Qingsong Xu

Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to derive and not suitable for practical application, a digital inverse model is established based on the input and output data of a piezoelectric actuator. Moreover, to mitigate the compensation error of the feedforward control, a feedback control scheme is implemented using different types of control algorithms in terms of PID control, fuzzy control, and fuzzy PID control. Extensive simulation studies are carried out using the three kinds of control systems. Comparative investigation reveals that the fuzzy PID control system with feedforward compensation is capable of providing quicker response and better control accuracy than the other two ones. It provides a promising way of precision control for piezoelectric actuator.


Author(s):  
Stefan Reichl ◽  
Wolfgang Steiner

This work presents three different approaches in inverse dynamics for the solution of trajectory tracking problems in underactuated multibody systems. Such systems are characterized by less control inputs than degrees of freedom. The first approach uses an extension of the equations of motion by geometric and control constraints. This results in index-five differential-algebraic equations. A projection method is used to reduce the systems index and the resulting equations are solved numerically. The second method is a flatness-based feedforward control design. Input and state variables can be parameterized by the flat outputs and their time derivatives up to a certain order. The third approach uses an optimal control algorithm which is based on the minimization of a cost functional including system outputs and desired trajectory. It has to be distinguished between direct and indirect methods. These specific methods are applied to an underactuated planar crane and a three-dimensional rotary crane.


2014 ◽  
Vol 620 ◽  
pp. 363-368
Author(s):  
Lian Xia ◽  
Jing Qiu ◽  
Jiang Han

In this paper, theory analysis, the MATLAB research and experimental verification about feedforward fuzzy PID control have been performed by combining the characteristics of the PID, feedforward control and fuzzy control. Simulation results show that the feedforward fuzzy PID control could improve the response speed of the system and reduce the tracking error of the system which shows the obvious superiority compared with the PID, feedforward PID, and fuzzy PID. Load experiment for such four kinds of control modes is done on the linear motor platform, and the experimental results show that the accuracy of the feedforward fuzzy PID control is obviously higher than the other three kinds of control modes and the feedforward fuzzy PID control is easier to be implemented. The position error of feedforward fuzzy PID control is changeless during the load change, and the change of the speed tracking error is small, which proves that the feedforward fuzzy PID control is suitable for the condition of load change or the great disturbance.


2003 ◽  
Vol 17 (11) ◽  
pp. 2325-2331
Author(s):  
M. LU ◽  
P. J. LEONARD ◽  
P. MARKETOS ◽  
T. MEYDAN ◽  
A. J. MOSES

Dynamic hysteresis property is a common phenomenon in FeSi materials under time-varied applied field. This paper presented a dynamic hysteresis model based on Preisach scheme. The rectangular-shaped elementary hysteresis operator with two states in classical Preisach model is replaced by a non-rectangular shaped one with multiple states. The output of each state is calculated by a cosine function. The proposed dynamic hysteresis model is experimently tested by comparing the simulated hysteresis loops to experimental ones. The model can be used to describe the dynamic hysteresis in FeSi material for magnetizing frequencies from quasi-static to several hundred Hertz.


2014 ◽  
Vol 47 (3) ◽  
pp. 10926-10933 ◽  
Author(s):  
G. Rizzello ◽  
D. Naso ◽  
A. York ◽  
S. Seelecke

Sign in / Sign up

Export Citation Format

Share Document