Prediction of Humid Air Heat Exchanger Performance Using Artificial Neural Networks

1999 ◽  
Author(s):  
Arturo Pacheco-Vega ◽  
Mihir Sen ◽  
K. T. Yang ◽  
Rodney L. McClain

Abstract In the present study we apply an artificial neural network to predict the operation of a humid air-water fin-tube compact heat exchanger. The network configuration is of the feedforward type with a sigmoid activation function and a backpropagation algorithm. Published experimental data, corresponding to humid air flowing over the heat exchanger tubes and water flowing inside them, are used to train the neural network. After training with known experimental values of the humid-air flow rates, dry-bulb and wet-bulb inlet temperatures for various geometrical configurations, the j-factor and heat transfer rate predictions of the network were tested against the experimental values. Comparisons were made with published predictions of power-law correlations which were obtained from the same data. The results demonstrate that the neural network is able to predict the performance of this heat exchanger much better than the correlations.

2000 ◽  
Author(s):  
Arturo Pacheco-Vega ◽  
Mihir Sen ◽  
Rodney L. McClain

Abstract In the current study we consider the problem of accuracy in heat rate estimations from artificial neural network models of heat exchangers used for refrigeration applications. The network configuration is of the feedforward type with a sigmoid activation function and a backpropagation algorithm. Limited experimental measurements from a manufacturer are used to show the capability of the neural network technique in modeling the heat transfer in these systems. Results from this exercise show that a well-trained network correlates the data with errors of the same order as the uncertainty of the measurements. It is also shown that the number and distribution of the training data are linked to the performance of the network when estimating the heat rates under different operating conditions, and that networks trained from few tests may give large errors. A methodology based on the cross-validation technique is presented to find regions where not enough data are available to construct a reliable neural network. The results from three tests show that the proposed methodology gives an upper bound of the estimated error in the heat rates.


2000 ◽  
Vol 123 (2) ◽  
pp. 348-354 ◽  
Author(s):  
Arturo Pacheco-Vega ◽  
Gerardo Dı´az ◽  
Mihir Sen ◽  
K. T. Yang ◽  
Rodney L. McClain

We consider the flow of humid air over fin-tube multi-row multi-column compact heat exchangers with possible condensation. Previously published experimental data are used to show that a regression analysis for the best-fit correlation of a prescribed form does not provide an unique answer, and that there are small but significant differences between the predictions of the different correlations thus obtained. It is also shown that it is more accurate to predict the heat rate directly rather than through intermediate quantities like the j-factors. The artificial neural network technique is offered as an alternative technique. It is trained with experimental values of the humid-air flow rates, dry-bulb and wet-bulb inlet temperatures, fin spacing, and heat transfer rates. The trained network is then used to make predictions of the heat transfer. Comparison of the results demonstrates that the neural network is more accurate than conventional correlations.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Author(s):  
M.S. Shunmugam ◽  
N. Siva Prasad

AbstractA fillet curve is provided at the root of the spur gear tooth, as stresses are high in this portion. The fillet curve may be a trochoid or an arc of suitable size as specified by designer. The fillet stress is influenced by the fillet geometry as well as the number of teeth, modules, and the pressure angle of the gear. Because the relationship is nonlinear and complex, an artificial neural network and a backpropagation algorithm are used in the present work to predict the fillet stresses. Training data are obtained from finite element simulations that are greatly reduced using Taguchi's design of experiments. Each simulation takes around 30 min. The 4-5-1 network and a sigmoid activation function are chosen. TRAINLM function is used for training the network with a learning rate parameter of 0.01 and a momentum constant of 0.8. The neural network is able to predict the fillet stresses in 0.03 s with reasonable accuracy for spur gears having 25–125 teeth, a 1–5 mm module, a 0.05–0.45 mm fillet radius, and a 15°–25° pressure angle.


1999 ◽  
Author(s):  
Gerardo Díaz ◽  
Mihir Sen ◽  
K. T. Yang ◽  
Rodney L. McClain

Abstract The artificial neural networks technique is applied to control the dynamic behavior of a fin-tube single-row compact heat exchanger. The experimental setup consists of a variable-speed wind-tunnel facility built specifically for heat exchanger analysis. Two different control methodologies were studied. The first one corresponds to adaptive control in which the weights and biases of the artificial neural network that acts as a controller are modified depending on the error obtained between the desired outlet air temperature and its measured value. Experimental results show that the stability of the system varies depending on the different ways of performing the adaptation of the controller. The second control strategy tested corresponds to internal model control. We added a filter and an integral control structure to obtain an offset-free steady state prediction. The control methodology was extensively tested and the results compared to those of conventional PID control. The results were very favorable for the neural controller.


2020 ◽  
Vol 9 (4) ◽  
pp. 213
Author(s):  
I KETUT RESTU WIRANATA ◽  
G.K. GANDHIADI ◽  
LUH PUTU IDA HARINI

Bali has an increasing tourism potential. This is evidenced by the increasing number of foreign tourist visits to Bali Province each year. Although Bali's tourism trends have continued to increase over the past few years, efforts to improve the quality of Bali tourism need to be made. One way is to do forecasting. To support improvement efforts in Bali's tourism sector, the author created a forecasting system for foreign tourists to Bali province using artificial neural network methods with back propagation algorithms. Artificial Neural Networks with back propagation algorithms are neural network algorithms by finding optimal weight values. The forecast results using the binary sigmoid activation function were obtained by 489,862 foreign tourists in November 2019 with MAPE at 1.62% and 487,342 foreign tourists in December 2019 with MAPE of 11.78%. The forecast results using the bipolar sigmoid activation function were obtained by 493,200 foreign tourists in November 2019 with MAPE of 0.95% and 484,090 foreign tourists in December 2019 with MAPE of 12.37%.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4242
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

The purpose of this research is the evaluation of artificial neural network models in the prediction of stresses in a 400 MVA power transformer winding conductor caused by the circulation of fault currents. The models were compared considering the training, validation, and test data errors’ behavior. Different combinations of hyperparameters were analyzed based on the variation of architectures, optimizers, and activation functions. The data for the process was created from finite element simulations performed in the FEMM software. The design of the Artificial Neural Network was performed using the Keras framework. As a result, a model with one hidden layer was the best suited architecture for the problem at hand, with the optimizer Adam and the activation function ReLU. The final Artificial Neural Network model predictions were compared with the Finite Element Method results, showing good agreement but with a much shorter solution time.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 626
Author(s):  
Svajone Bekesiene ◽  
Rasa Smaliukiene ◽  
Ramute Vaicaitiene

The present study aims to elucidate the main variables that increase the level of stress at the beginning of military conscription service using an artificial neural network (ANN)-based prediction model. Random sample data were obtained from one battalion of the Lithuanian Armed Forces, and a survey was conducted to generate data for the training and testing of the ANN models. Using nonlinearity in stress research, numerous ANN structures were constructed and verified to limit the optimal number of neurons, hidden layers, and transfer functions. The highest accuracy was obtained by the multilayer perceptron neural network (MLPNN) with a 6-2-2 partition. A standardized rescaling method was used for covariates. For the activation function, the hyperbolic tangent was used with 20 units in one hidden layer as well as the back-propagation algorithm. The best ANN model was determined as the model that showed the smallest cross-entropy error, the correct classification rate, and the area under the ROC curve. These findings show, with high precision, that cohesion in a team and adaptation to military routines are two critical elements that have the greatest impact on the stress level of conscripts.


1991 ◽  
Vol 45 (10) ◽  
pp. 1706-1716 ◽  
Author(s):  
Mark Glick ◽  
Gary M. Hieftje

Artificial neural networks were constructed for the classification of metal alloys based on their elemental constituents. Glow discharge-atomic emission spectra obtained with a photodiode array spectrometer were used in multivariate calibrations for 7 elements in 37 Ni-based alloys (different types) and 15 Fe-based alloys. Subsets of the two major classes formed calibration sets for stepwise multiple linear regression. The remaining samples were used to validate the calibration models. Reference data from the calibration sets were then pooled into a single set to train neural networks with different architectures and different training parameters. After the neural networks learned to discriminate correctly among alloy classes in the training set, their ability to classify samples in the testing set was measured. In general, the neural network approach performed slightly better than the K-nearest neighbor method, but it suffered from a hidden classification mechanism and nonunique solutions. The neural network methodology is discussed and compared with conventional sample-classification techniques, and multivariate calibration of glow discharge spectra is compared with conventional univariate calibration.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Sign in / Sign up

Export Citation Format

Share Document