Heat Transfer Implications in the First MEMS Fabricated Thermal Transpiration-Driven Vacuum Pump for Gases

2000 ◽  
Author(s):  
Stephen E. Vargo ◽  
Amanda A. Green ◽  
E. P. Muntz

Abstract The success of NASA’s future space missions and the development of portable, commercial instrument packages will depend greatly on miniaturized components enabled by the use of microelectromechanical systems (MEMS). Both of these application markets for miniaturized instruments are governed by the use of MEMS components that satisfy stringent power, mass, volume, contamination and integration requirements. An attractive MEMS vacuum pump for instruments requiring vacuum conditions is the Knudsen Compressor, which operates based on the rarefied gas dynamics phenomenon of thermal transpiration. Thermal transpiration describes the regime where gas flows can be induced in a system by maintaining temperature differences across porous materials under rarefied conditions. This pumping mechanism provides two overwhelmingly attractive features as a miniature vacuum pump — no moving parts and no working fluids or lubricants. Due to favorable power, volume and mass estimates a Knudsen Compressor fabricated using MEMS fabrication techniques (lithography, deep reactive ion etching) and new materials (silicon, aerogel) has been completed. The experimental testing of this MEMS Knudsen Compressor device’s thermal and pumping performance are outlined in this manuscript. Good agreement between experiments and numerical predictions using a transitional flow analysis have also been obtained although simple simulations based on the aerogel’s structure are difficult to perform.

Author(s):  
Angelos G. Klothakis ◽  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

During the past decade considerable efforts have been exerted for the simulation of rarefied gas flows in a wide range of applications, like the flow over suborbital vehicles, in microelectromechanical systems, etc. Such flows appear to be significantly different from those at the continuum regime, making the Navier-Stokes equations to fail without further amendment. In this study an in-house academic CFD solver, named Galatea, is modified appropriately to account for rarefied gases. The no-slip condition on solid walls is no longer valid, hence, velocity slip and temperature jump boundary conditions are applied instead. Additionally, a second-order accurate slip model has been incorporated, namely, this of Beskok and Karniadakis, increasing the accuracy in the same area but avoiding simultaneously the numerical difficulties, entailed by the computation of the second derivative of slip velocity when complex geometries and unstructured grids are coupled. The proposed solver is validated against rarefied laminar flow over a suborbital shuttle, designed by the Azim’UTBM team. The obtained results are compared with those extracted with the parallel open-source kernel SPARTA, which is based on the DSMC method. A satisfactory agreement is reported between the two methodologies, demonstrating the potential of the modified solver to simulate effectively such flows.


Author(s):  
J-B Li ◽  
K Jiang ◽  
G J Davies

A novel die-sinking micro-electro discharge machining (EDM) process is presented for volume fabrication of metallic microcomponents. In the process, a high-precision silicon electrode is fabricated using deep reactive ion etching (DRIE) process of microelectromechanical systems (MEMS) technology and then coated with a thin layer of copper to increase the conductivity. The metalized Si electrode is used in the EDM process to manufacture metallic microcomponents by imprinting the electrode onto a flat metallic surface. The two main advantages of this process are that it enables the fabrication of metallic microdevices and reduces manufacturing cost and time. The development of the new EDM process is described. A silicon component was produced using the Surface Technology Systems plasma etcher and the DRIE process. Such components can be manufactured with a precision in nanometres. The minimum feature of the component is 50 μm. In the experiments, the Si component was coated with copper and then used as the electrode on an EDM machine of 1 μm resolution. In the manufacturing process, 130 V and 0.2 A currents were used for a period of 5 min. The SEM images of the resulting device show clear etched areas, and the electric discharge wave chart indicates a good fabrication condition. The experimental results have been analysed and the new micro-EDM process is found to be able to fabricate 25 μm features.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
F. P. P. Tan ◽  
N. B. Wood ◽  
G. Tabor ◽  
X. Y. Xu

In this study, two different turbulence methodologies are investigated to predict transitional flow in a 75% stenosed axisymmetric experimental arterial model and in a slightly modified version of the model with an eccentric stenosis. Large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) methods were applied; in the LES simulations eddy viscosity subgrid-scale models were employed (basic and dynamic Smagorinsky) while the RANS method involved the correlation-based transitional version of the hybrid k-ε/k-ω flow model. The RANS simulations used 410,000 and 820,000 element meshes for the axisymmetric and eccentric stenoses, respectively, with y+ less than 2 viscous wall units for the boundary elements, while the LES used 1,200,000 elements with y+ less than 1. Implicit filtering was used for LES, giving an overlap between the resolved and modeled eddies, ensuring accurate treatment of near wall turbulence structures. Flow analysis was carried out in terms of vorticity and eddy viscosity magnitudes, velocity, and turbulence intensity profiles and the results were compared both with established experimental data and with available direct numerical simulations (DNSs) from the literature. The simulation results demonstrated that the dynamic Smagorinsky LES and RANS transitional model predicted fairly comparable velocity and turbulence intensity profiles with the experimental data, although the dynamic Smagorinsky model gave the best overall agreement. The present study demonstrated the power of LES methods, although they were computationally more costly, and added further evidence of the promise of the RANS transition model used here, previously tested in pulsatile flow on a similar model. Both dynamic Smagorinsky LES and the RANS model captured the complex transition phenomena under physiological Reynolds numbers in steady flow, including separation and reattachment. In this respect, LES with dynamic Smagorinsky appeared more successful than DNS in replicating the axisymmetric experimental results, although inflow conditions, which are subject to caveats, may have differed. For the eccentric stenosis, LES with Smagorinsky coefficient of 0.13 gave the closest agreement with DNS despite the known shortcomings of fixed coefficients. The relaminarization as the flow escaped the influence of the stenosis was amply demonstrated in the simulations, graphically so in the case of LES.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 353
Author(s):  
Bin Zhang ◽  
Hongsheng Liu ◽  
Dezhi Li ◽  
Jinhui Liang ◽  
Jun Gao

Energy harvesting using piezoceramic has drawn a lot of attention in recent years. Its potential usage in microelectromechanical systems is starting to become a reality thanks to the development of an integrated circuit. An accurate equivalent circuit of piezoceramic is important in energy harvesting and the sensing system. A piezoceramic is always considered to be a current source according to empirical testing, instead of the derivation from its piezoelectric characteristics, which lacks accuracy under complicated mechanical excitation situations. In this study, a new current output model is developed to accurately estimate its value under various kinds of stimulation. Considering the frequency, amplitude and preload variation imposed on a piezoceramic, the multivariate model parameters are obtained in relation to piezo coefficients. Using this model, the current output could be easily calculated without experimental testing in order to quickly estimate the output power in energy harvesting whatever its geometric shape and the various excitations.


2016 ◽  
Vol 7 ◽  
pp. 43
Author(s):  
Emil Pitz ◽  
Matei-Constantin Miron ◽  
Imre Kállai ◽  
Zoltán Major

The current paper is describing the implementation of a multiscale numerical model for prediction of stiffness and strength in braided composites. The model is validated by experimental testing of single-layer braided tubes under torsional loading utilising digital image correlation (DIC). For the numerical model the entire braided structure is modelled at yarn detail level, taking into account the yarn behaviour as well as individual yarn-to-yarn interactions by using cohesive contact definitions. By means of Hashin’s failure criteria and cohesive contact damage, failure of the yarns and failure of the yarn-to-yarn interface is being accounted for. Thereby the material failure behaviour can be predicted. For validation of the model, torsion tests of biaxially braided single-layer composite tubes were performed. The strain distribution at the specimen surface was studied using the DIC system ARAMIS in 3D mode.


Author(s):  
F M Santos ◽  
P Temarel ◽  
C Guedes Soares

The aim of this paper is to study the symmetric (i.e. heave and pitch motions and distortions associated with vertical bending) wave-induced dynamic behaviour of a fast patrol boat using a unified hydroelasticity analysis. This includes two- and three-dimensional structural idealizations using beam and three-dimensional finite element modelling. The fluid—flexible structure interaction is carried out using three-dimensional potential flow analysis, for both structural idealizations, based on a pulsating source singularity distribution on the mean wetted surface. The calculations are carried out in regular waves for two forward speeds (Froude numbers Fn = 0.5 and 0.63) and three heading angles, i.e. 180 (head), 135, and 90 degrees. Results from full-scale trials are also presented in order to compare rigid body motion transfer functions with numerical predictions. There are large differences between numerically predicted and measured motions, as is to be expected for this fast hull form. The paper reports that the evaluation of the dynamic behaviour of the fast patrol boat, with small length to beam ratio, by means of the unified hydroelastic analysis, shows some inherent limitations of the beamlike approach for this particular type of vessel.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Toshiyuki Doi

Plane thermal transpiration of a rarefied gas between two walls of Maxwell-type boundaries with different accommodation coefficients is studied based on the linearized Boltzmann equation for a hard-sphere molecular gas. The Boltzmann equation is solved numerically using a finite difference method, in which the collision integral is evaluated by the numerical kernel method. The detailed numerical data, including the mass and heat flow rates of the gas, are provided over a wide range of the Knudsen number and the entire range of the accommodation coefficients. Unlike in the plane Poiseuille flow, the dependence of the mass flow rate on the accommodation coefficients shows different characteristics depending on the Knudsen number. When the Knudsen number is relatively large, the mass flow rate of the gas increases monotonically with the decrease in either of the accommodation coefficients like in Poiseuille flow. When the Knudsen number is small, in contrast, the mass flow rate does not vary monotonically but exhibits a minimum with the decrease in either of the accommodation coefficients. The mechanism of this phenomenon is discussed based on the flow field of the gas.


Sign in / Sign up

Export Citation Format

Share Document