Force-Enabled Sculpting of CAD Models

2000 ◽  
Author(s):  
Pietro Buttolo ◽  
Paul Stewart ◽  
Yifan Chen

Abstract Transferring geometrical information between Computer-Aided Design models and physical prototypes is a time-intensive task and as such is one of the critical bottlenecks in the automotive design process. Sculpting of free-form surfaces in force enabled CAD applications could bridge the gap between digital models and certain physical prototypes. In this paper a novel force-enabled surface manipulation method called stick-to-surface/stick-to-pen is presented. During sculpting, the haptic device is constrained to follow the virtual surface, and simultaneously the surface is controlled to follow the device. The trade-off between which follows which is managed by partitioning the Cartesian space into a browsing subspace and a manipulation subspace.

2021 ◽  
Vol 111 (11-12) ◽  
pp. 797-802
Author(s):  
Leonhard Alexander Meijer ◽  
Torben Merhofe ◽  
Timo Platt ◽  
Dirk Biermann

In diesem Beitrag wird ein neuer Ansatz zum Erstellen von Maschinenprogrammen zur mikrofrästechnischen Oberflächenstrukturierung vorgestellt und die Anwendung der Prozesskette für ein komplexes, industrielles Verzahnungswerkzeug beschrieben. Durch die Reduzierung des Berechnungsaufwandes in der CAD/CAM (Computer-aided Design & Manufacturing)-Umgebung können die Limitierungen konventioneller Softwarelösungen umgangen und Bearbeitungsprogramme für komplexe Strukturierungsaufgaben effizient erstellt werden.   A new method for generating machine programs for micromilling surface structuring is presented, and the application of the process chain to a complex, industrial gearing die is described. By reducing the computational effort in the CAD/CAM (Computer-aided Design & Manufacturing) environment, the problems of conventional software solutions can be avoided and complex machining programs can be created.


2006 ◽  
Vol 6 (3) ◽  
pp. 308-314 ◽  
Author(s):  
Duhwan Mun ◽  
Heungki Kim ◽  
Kwangsub Jang ◽  
Junmyun Cho ◽  
Junhwan Kim ◽  
...  

Reusing existing design models and utilizing an e-Catalog for components are required for faster product development. For the acceleration, an e-Catalog should provide parametric computer aided design (CAD) models, since parametric information is necessary for configuration design. There are difficulties, however, in building a parametric library of all the necessary combinations using a CAD system, because there are too many component combinations for each product. To overcome this problem, we propose a table parametric method to generate parametric CAD models automatically, and describe its details.


2014 ◽  
Vol 474 ◽  
pp. 3-8
Author(s):  
Ivan Baránek ◽  
Ivan Buranský

The article is focused on development trends in the field of design and production of free form surfaces (FFS), which are maily connected with computer support of these operations. There is a description of the conversion of conventional teaching into online education under the terms of Institute of production technologies of FMST STU in Trnava. The chain of knowledge that is required for design, production and checking processes of free form surfaces was created. The chain was applied into the curriculum of the following study programmes: Computer Aided Production Technologies and Computer Aided Design and Manufacturing. The checking model for education quality was created and applied for each subject.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2016 ◽  
Vol 8 (3) ◽  
Author(s):  
Hailin Huang ◽  
Bing Li ◽  
Jianyang Zhu ◽  
Xiaozhi Qi

This paper proposes a new family of single degree of freedom (DOF) deployable mechanisms derived from the threefold-symmetric deployable Bricard mechanism. The mobility and geometry of original threefold-symmetric deployable Bricard mechanism is first described, from the mobility characterstic of this mechanism, we show that three alternate revolute joints can be replaced by a class of single DOF deployable mechanisms without changing the single mobility characteristic of the resultant mechanisms, therefore leading to a new family of Bricard-derived deployable mechanisms. The computer-aided design (CAD) models are used to demonstrate these derived novel mechanisms. All these mechanisms can be used as the basic modules for constructing large volume deployable mechanisms.


Author(s):  
Thomas R. Langerak ◽  
Joris S. M. Vergeest

Modeling with free form features has become the standard in Computer-Aided Design (CAD). With the increasing complexity of free form CAD models, features offer a high-level approach to modeling shapes. However, in most commercial modeling packages, only a static set of free form features is available. Researchers have tried to solve this problem by coming up with methods for user-driven free form feature definition, but failed to connect their methods to a means to instantiate these user-driven free form features on a target surface. Reversely, researchers have proposed tools for modeling with free form features, but these methods are time-intensive in that they are as of yet unsuitable for pre-defined features. This paper presents a new method for user-driven feature definition, as well as a method to instantiate these user-defined features on a target surface. We propose the concept of a dual environment, in which the definition of a feature is maintained simultaneously with its instance on a target surface, allowing the user to modify the definition of an already instantiated feature. This dual environment enables dynamic feature modeling, in which the user is able to change the definition of instantiated features on-the-fly. Furthermore, the proposed instantiation method is independent from the type of shape representation of the target surface and thereby increases the applicability of the method. The paper includes an extensive application example and discusses the results and shortcomings of the proposed methods.


Author(s):  
Aditya Balu ◽  
Sambit Ghadai ◽  
Soumik Sarkar ◽  
Adarsh Krishnamurthy

Abstract Computer-aided Design for Manufacturing (DFM) systems play an essential role in reducing the time taken for product development by providing manufacturability feedback to the designer before the manufacturing phase. Traditionally, DFM rules are hand-crafted and used to accelerate the engineering product design process by integrating manufacturability analysis during design. Recently, the feasibility of using a machine learning-based DFM tool in intelligently applying the DFM rules have been studied. These tools use a voxelized representation of the design and then use a 3D-Convolutional Neural Network (3D-CNN), to provide manufacturability feedback. Although these frameworks work effectively, there are some limitations to the voxelized representation of the design. In this paper, we introduce a new representation of the computer-aided design (CAD) model using orthogonal distance fields (ODF). We provide a GPU-accelerated algorithm to convert standard boundary representation (B-rep) CAD models into ODF representation. Using the ODF representation, we build a machine learning framework, similar to earlier approaches, to create a machine learning-based DFM system to provide manufacturability feedback. As proof of concept, we apply this framework to assess the manufacturability of drilled holes. The framework has an accuracy of more than 84% correctly classifying the manufacturable and non-manufacturable models using the new representation.


Sign in / Sign up

Export Citation Format

Share Document