A Model for the Tool Temperature During Machining With a Rotary Tool

Author(s):  
Hossam A. Kishawy ◽  
Andrew G. Gerber

Abstract In this paper a model is developed to analyze heat transfer and temperature distribution resulting during machining with rotary tools. The presented model is based on a finite-volume discretization approach applied to a general conservation of energy statement for the rotary tool and chip during machining. The tool rotational speed is modeled and its effect on the heat partitioning between the tool and the chip is investigated. The model is also used to examine the influence of tool speed on the radial temperature distribution on the tool rake face. A comparison between the predicted and previously measured temperature data shows good agreement. In general the results show that the tool-chip partitioning is influenced dramatically by increasing the tool rotational speed at low to moderate levels of tool speed. Also, there is an optimum tool rotational speed at which further increase in the tool rotational speed increases the average tool temperature.

2004 ◽  
Vol 126 (2) ◽  
pp. 404-407 ◽  
Author(s):  
H. A. Kishawy and ◽  
A. G. Gerber

In this paper a model is developed to analyze heat transfer and temperature distribution resulting during machining with rotary tools. The presented model is based on a finite-volume discretization approach applied to a general conservation of energy statement for the rotary tool and chip during machining. The tool rotational speed is modeled and its effect on the heat partitioning between the tool and the chip is investigated. The model is also used to examine the influence of tool speed on the radial temperature distribution on the tool rake face. A comparison between the predicted and previously measured temperature data shows good agreement. In general the results show that the tool-chip partitioning is influenced dramatically by increasing the tool rotational speed at low to moderate levels of tool speed. Also, there is an optimum tool rotational speed at which further increase in the tool rotational speed increases the average tool temperature.


2002 ◽  
Vol 124 (6) ◽  
pp. 669-675 ◽  
Author(s):  
Bernard Choi ◽  
Ashley J. Welch

Cryogen spray cooling (CSC) is used in conjunction with pulsed laser irradiation for treatment of dermatologic indications. The main goal of this study was to determine the radial temperature distribution created by CSC and evaluate the importance of radial temperature gradients upon the subsequent analysis of tissue cooling throughout the skin. Since direct measurement of surface temperatures during CSC are hindered by the formation of a liquid cryogen layer, temperature distributions were estimated using a thin, black aluminum sheet. An infrared focal plane array camera was used to determine the 2-D backside temperature distribution during a cryogen spurt, which preliminary measurements have shown is a good indicator of the front-side temperature distribution. The measured temperature distribution was approximately gaussian in shape. Next, the transient temperature distributions in skin were calculated for two cases: 1) the standard 1-D solution which assumes a uniform cooling temperature distribution, and 2) a 2-D solution using a nonuniform surface cooling temperature distribution based upon the back-side infrared temperature measurements. At the end of a 100-ms cryogen spurt, calculations showed that, for the two cases, large discrepancies in temperatures at the surface and at a 60-μm depth were found at radii greater than 2.5 mm. These results suggest that it is necessary to consider radial temperature gradients during cryogen spray cooling of tissue.


2008 ◽  
Vol 389-390 ◽  
pp. 138-143 ◽  
Author(s):  
Suryadiwansa Harun ◽  
Toshiro Shibasaka ◽  
Toshimichi Moriwaki

In this paper, turning with actively driven rotary tool was investigated. The influence of machining conditions such as tool rotational speed and inclination angle on the cutting edge temperature is examined experimentally. The temperature was measured by a thermocouple of constantan wire and work material. Experimental results show that the cutting temperature decreases with increasing tool rotational speed to a minimum value at a certain tool rotational speed and then increase. Next, the minimum temperature recorded by tool rotation was approximately 150oC lower than that the cutting with a non-rotating tool. Finally, the cutting temperature also decreases with the increase of inclination angle to a minimum value at an inclination angle.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuhui Wu ◽  
Xinzhi Zhou ◽  
Li Zhao ◽  
Chenlong Dong ◽  
Hailin Wang

Acoustic tomography (AT), as a noninvasive temperature measurement method, can achieve temperature field measurement in harsh environments. In order to achieve the measurement of the temperature distribution in the furnace and improve the accuracy of AT reconstruction, a temperature field reconstruction algorithm based on the radial basis function (RBF) interpolation method optimized by the evaluation function (EF-RBFI for short) is proposed. Based on a small amount of temperature data obtained by the least square method (LSM), the RBF is used for interpolation. And, the functional relationship between the parameter of RBF and the root-mean-square (RMS) error of the reconstruction results is established in this paper, which serves as the objective function for the effect evaluation, so as to determine the optimal parameter of RBF. The detailed temperature description of the entire measured temperature field is finally established. Through the reconstruction of three different types of temperature fields provided by Dongfang Boiler Works, the results and error analysis show that the EF-RBFI algorithm can describe the temperature distribution information of the measured combustion area globally and is able to reconstruct the temperature field with high precision.


Sign in / Sign up

Export Citation Format

Share Document