Estimation of the Acoustic Scattering Matrix for a Centrifugal Pump

Author(s):  
M. J. R. Bardeleben ◽  
D. S. Weaver

This paper presents the results of a theoretical and experimental investigation into the acoustic scattering matrix for a centrifugal pump. Background is provided which examines past research into acoustic two-port models, illustrating the benefits and laying the groundwork for the current incarnation of the scattering matrix. The results reveal that the traditional form of the transmission matrix is not adequate for predicting the parameters of the scattering matrix and a new form is suggested. With a simple modification, the predicted values successfully capture the trend in the experimental data. The presented research is still ongoing, looking to improve the model by including the compliance of the pump housing and inertial effects at the pump ports.

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1489
Author(s):  
Guidong Li ◽  
Jorge Parrondo ◽  
Yang Wang

Fluid-dynamic noise in centrifugal pumps as a significant sound source in piping systems has gained high attention due to the requirements of vibration and noise reduction in many fields. The acoustic characteristics of the fluid-dynamic noise from pumps are bound to be affected by the pipe ports and other piping components during the operation of the pump system. Therefore, the direct measurement of pressure pulsations in the pipeline of a test pump does not directly reflect the acoustic properties of the pump itself, because the coupling effects of the hydraulic system, which can even cause standing waves, may be seriously misleading in some situations. In this paper, an alternative experimental method has been applied to identify the so-called acoustic scattering matrix of a laboratory centrifugal pump. The elements of the scattering matrix characterize how the acoustic pressure waves are transmitted or reflected from the pump ports, i.e., it summarizes the passive acoustic properties of the pumps. For the tests, the test pump was connected in parallel to another auxiliary pump driven with a variable-frequency that played the role of an external sound source. The acoustic pressure waves induced in the suction and discharge pipes were mathematically decomposed into the corresponding incoming and exiting pressure waves travelling in the positive (P+) and negative (P−) directions respectively, by means of the two-microphone procedure. This paper shows the elements of the scattering matrix determined for the test pump as a function of frequency. These results represent a reference for subsequent theoretical research on the acoustic scattering matrix of centrifugal pumps.


Author(s):  
Malte Merk ◽  
Camilo Silva ◽  
Wolfgang Polifke ◽  
Renaud Gaudron ◽  
Marco Gatti ◽  
...  

This study assesses and compares two alternative approaches to determine the acoustic scattering matrix of a premixed turbulent swirl combustor: (1) The acoustic scattering matrix coefficients are obtained directly from a compressible large eddy simulation (LES). Specifically, the incoming and outgoing characteristic waves f and g extracted from the LES are used to determine the respective transmission and reflection coefficients via System Identification (SI) techniques. (2) The flame transfer function (FTF) is identified from LES time series data of upstream velocity and heat release rate. The transfer matrix of the reactive combustor is then derived by combining the FTF with the Rankine–Hugoniot (RH) relations across a compact heat source and a transfer matrix of the cold combustor, which is deduced from a linear network model. Linear algebraic transformation of the transfer matrix consequently yields the combustor scattering matrix. In a cross-comparison study that includes comprehensive experimental data, it is shown that both approaches successfully predict the scattering matrix of the reactive turbulent swirl combustor.


2022 ◽  
Vol 1 (15) ◽  
pp. 100-103
Author(s):  
Dmitriy Shurupov ◽  
Nina Sosnovskaya ◽  
Nikolay Korchevin ◽  
Aleksey Bal'chugov

The article presents the results of a study of the process of obtaining a shiny nickel coating on steel from sulfuric acid electrolyte in the presence of an organic brightening additive - a de-rivative of rubeanhydric acid - under different modes of electrolysis. The expediency of using a nickel coating for corrosion protection of the housing of a high-pressure centrifugal pump has been substantiated


2019 ◽  
Vol 27 (03) ◽  
pp. 1850027 ◽  
Author(s):  
Max Meindl ◽  
Malte Merk ◽  
Fabian Fritz ◽  
Wolfgang Polifke

The acoustic transmissions and reflections of plane waves at duct singularities can be represented with so-called scattering matrices. This paper shows how to extract scattering matrices utilizing linearized compressible flow equations and provides a comparative study of different governing equations, namely the Helmholtz, linearized Euler and linearized Navier–Stokes equations. A discontinuous Galerkin finite element method together with a two-source forcing is employed. With this method, the scattering matrix for a radial swirler of a combustion test-rig is computed and validated against the results of a fully compressible Large-Eddy-Simulation. Analogously, the scattering behavior of an axial swirler is investigated. The influence of acoustic-hydrodynamic interactions, viscous effects as well as unsteady boundary layers on the results is investigated for both configurations. A thermoacoustic stability analysis of the combustion test-rig housing the axial swirler is carried out, utilizing the scattering matrix of the swirler. Major influence of the reflections coming from the swirler on the thermoacoustic eigenfrequencies is found.


2008 ◽  
Vol 11 (05) ◽  
pp. 529-544 ◽  
Author(s):  
HOLGER DETTE ◽  
DANIEL ZIGGEL

In this paper a new method for monotone estimation of discount curves is proposed. The main idea of this approach is a simple modification of the commonly used (unconstrained) McCulloch Spline. We construct an integrated density estimate from the predicted values of the discount curve. It can be shown that this statistic is an estimate of the inverse of the discount function and the final estimate can be obtained by a numerical inversion. The resulting procedure is simple and we have implemented it in Excel and VBA, respectively. The performance is illustrated by several examples, in which the curve was previously estimated with an unconstrained McCulloch Spline.


Author(s):  
Malte Merk ◽  
Camilo Silva ◽  
Wolfgang Polifke ◽  
Renaud Gaudron ◽  
Marco Gatti ◽  
...  

This study assesses and compares two alternative approaches to determine the acoustic scattering matrix of a pre-mixed turbulent swirl combustor: 1) The acoustic scattering matrix coefficients are obtained directly from a compressible Large Eddy Simulation (LES). Specifically, the incoming and outgoing characteristic waves f and g extracted from the LES are used to determine the respective transmission and reflection coefficients via System Identification techniques. 2) The flame transfer function (FTF) is identified from LES time series data of upstream velocity and heat release rate. The transfer matrix of the reactive combustor is then derived by combining the FTF with the Rankine-Hugoniot relations across a compact heat source and a transfer matrix of the cold combustor, which is deduced from a linear network model. Linear algebraic transformation of the transfer matrix consequently yields the combustor scattering matrix. A cross-comparison study that includes comprehensive experimental data shows that both approaches successfully predict the scattering matrix of the reactive turbulent swirl combustor.


Sign in / Sign up

Export Citation Format

Share Document