scholarly journals Experimental Investigation on the Acoustic Scattering Matrix for a Centrifugal Pump

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1489
Author(s):  
Guidong Li ◽  
Jorge Parrondo ◽  
Yang Wang

Fluid-dynamic noise in centrifugal pumps as a significant sound source in piping systems has gained high attention due to the requirements of vibration and noise reduction in many fields. The acoustic characteristics of the fluid-dynamic noise from pumps are bound to be affected by the pipe ports and other piping components during the operation of the pump system. Therefore, the direct measurement of pressure pulsations in the pipeline of a test pump does not directly reflect the acoustic properties of the pump itself, because the coupling effects of the hydraulic system, which can even cause standing waves, may be seriously misleading in some situations. In this paper, an alternative experimental method has been applied to identify the so-called acoustic scattering matrix of a laboratory centrifugal pump. The elements of the scattering matrix characterize how the acoustic pressure waves are transmitted or reflected from the pump ports, i.e., it summarizes the passive acoustic properties of the pumps. For the tests, the test pump was connected in parallel to another auxiliary pump driven with a variable-frequency that played the role of an external sound source. The acoustic pressure waves induced in the suction and discharge pipes were mathematically decomposed into the corresponding incoming and exiting pressure waves travelling in the positive (P+) and negative (P−) directions respectively, by means of the two-microphone procedure. This paper shows the elements of the scattering matrix determined for the test pump as a function of frequency. These results represent a reference for subsequent theoretical research on the acoustic scattering matrix of centrifugal pumps.

Author(s):  
M. J. R. Bardeleben ◽  
D. S. Weaver

This paper presents the results of a theoretical and experimental investigation into the acoustic scattering matrix for a centrifugal pump. Background is provided which examines past research into acoustic two-port models, illustrating the benefits and laying the groundwork for the current incarnation of the scattering matrix. The results reveal that the traditional form of the transmission matrix is not adequate for predicting the parameters of the scattering matrix and a new form is suggested. With a simple modification, the predicted values successfully capture the trend in the experimental data. The presented research is still ongoing, looking to improve the model by including the compliance of the pump housing and inertial effects at the pump ports.


2019 ◽  
Vol 9 (23) ◽  
pp. 5018 ◽  
Author(s):  
Chang Guo ◽  
Jingying Wang ◽  
Ming Gao

The acoustic field distribution and evolution characteristics in a time domain inside a centrifugal pump are studied. During the fluid motion process, the acoustic source and acoustic pressure are basically less than 0, and the minimum value of the two parameters is distributed near the tongue. Additionally, the concentration, break, extend, migration and reaggregation phenomena of the minimum acoustic source region exist. Specifically, as the blade passes through the tongue, the minimum acoustic source region concentrates on the tongue firstly, then extends and migrates downstream slightly with the blade motion, and aggregates again around the tongue, which results in the similar evolution characteristics of acoustic pressure. Moreover, the standard deviation (STD) of acoustic source mainly focuses near the pressure side of blade tail and volute tongue, and the maximum STD is located at the tongue. Compared with the source component induced by stretching of the vortex, the source component induced by non-uniformity of fluid kinetic energy is closer to the overall acoustic source. Take the tongue as an example, at various rotational speeds, the STD proportions of the two components are about 5% and 95%, respectively. This study discusses the generation, distribution and evolution characteristics of acoustic field, which lays a foundation to analyze the acoustic field propagation mechanism of centrifugal pumps.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1488
Author(s):  
Guidong Li ◽  
Jorge Parrondo ◽  
Yang Wang

Fluid-dynamic noise induced by the unsteady fluid phenomena usually causes a negative influence on the hydraulic circuit system during the pump operation, especially at off-design flow rates. The spectrum of the pressure signals measured directly in the pipeline of the pump is usually employed to reflect the acoustic characteristic parameters of the fluid-dynamic noise of the pump itself. However, there exists a large difference between the spectrum characteristics directly measured and the actual characteristics of the acoustic source inside the pump due to the effects of the acoustic properties of the piping. Therefore, in order to verify the effect of the discharge piping on the pressure fluctuations of a laboratory pump, three different discharge piping schemes connected to the pump outlet were studied by opening and closing different valves. The results showed that the amplitude of the pressure pulsations in a constant monitor point changed with the shaft frequency and blade passing frequency. The variation range of the pressure pulsation magnitudes for the points monitored at the pump outlet is evidently larger than that for the points close to the cutwater of the volute.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Amr A. Abdel Fatah ◽  
Mohammed A. Hassan ◽  
Mohamed Lotfy ◽  
Antoine S. Dimitri

The area of predictive maintenance (PM) has received growing research interest in the past few years. Diagnostic capabilities of PM technologies have increased due to advances made in sensor technologies, signal processing algorithms, and the rapid development of computational power and data handling algorithms. Conventional PM programs are mostly built around analyzing sensors' data collected from physical systems. Incorporating simulation data collected from digital models replicating the physical system with sensors' data can lead to more optimization for operation and maintenance. This paper demonstrates the role of using digital models in implementing effective condition monitoring on centrifugal pumps. Two digital models are used to study the dynamic performance of a centrifugal pump experiencing cavitation condition. The first model is a three-dimensional fully turbulent computational fluid dynamic (CFD) model. Based on the pressure distribution obtained from the CFD, a novel analytical pressure pulsation model is developed and used to simulate the exciting forces affecting the pump. The second digital model is a pump casing dynamic model which is used to predict the casing vibration response to exciting forces due to faulty operating conditions. Results obtained from the digital models are validated using an experimental test rig of a small centrifugal pump. Using this concept, a pump faulty operation can be simulated to provide complete understanding of the root cause of the fault. Additionally, digital models can be used to simulate different corrective actions that would restore the normal operation of the pump.


2021 ◽  
Vol 321 ◽  
pp. 01010
Author(s):  
Lila Achour ◽  
Mathieu Specklin ◽  
Idir Belaidi ◽  
Smaine Kouidri

The performance and hydrodynamic behavior of centrifugal pumps when handling two-phase liquid-liquid flow and emulsion remain relatively unexplored, although they are of fundamental importance in optimizing the operating conditions of these pumps. Hence, this study aims at investigating the performance degradation of a centrifugal pump under emulsion flow by combined means of analytical and computational fluid dynamic (CFD) models. The analytical approach is based on internal energy loss equations while the CFD approach models the emulsion as a continuous and homogeneous single-phase fluid exhibiting shear thinning behavior. The results give a good insight into the performance degradation of such a system, especially at the best efficiency point (BEP).


2018 ◽  
Vol 1 (2) ◽  
pp. 24-39
Author(s):  
A. Farid ◽  
A. Abou El-Azm Aly ◽  
H. Abdallah

Cavitation in pumps is the most severe condition that centrifugal pumps can work in and is leading to a loss in their performance.  Herein, the effect of semi-open centrifugal pump side clearance on the inception of pump cavitation has been investigated.  The input pump pressure has been changed from 80 to 16 kPa and the pump side clearance has been changed from 1 mm to 3 mm at a rotation speed of 1500 rpm. It has been shown that as the total input pressure decreased; the static pressure inside the impeller is reduced while the total pressure in streamwise direction has been reduced, also the pump head is constant with the reduction of the total input pressure until the cavitation is reached. Head is reduced due to cavitation inception; the head is reduced in the case of a closed impeller with a percent of 1.5% while it is reduced with a percent of 0.5% for pump side clearance of 1mm, both are at a pressure of 20 kPa.   Results also showed that the cavitation inception in the pump had been affected and delayed with the increase of the pump side clearance; the cavitation has been noticed to occur at approximate pressures of 20 kPa for side clearance of 1mm, 18 kPa for side clearances of 2mm and 16 kPa for 3mm.


Author(s):  
Weihui Xu ◽  
Xiaoke He ◽  
Xiao Hou ◽  
Zhihao Huang ◽  
Weishu Wang

AbstractCavitation is a phenomenon that occurs easily during rotation of fluid machinery and can decrease the performance of a pump, thereby resulting in damage to flow passage components. To study the influence of wall roughness on the cavitation performance of a centrifugal pump, a three-dimensional model of internal flow field of a centrifugal pump was constructed and a numerical simulation of cavitation in the flow field was conducted with ANSYS CFX software based on the Reynolds normalization group k-epsilon turbulence model and Zwart cavitation model. The cavitation can be further divided into four stages: cavitation inception, cavitation development, critical cavitation, and fracture cavitation. Influencing laws of wall roughness of the blade surface on the cavitation performance of a centrifugal pump were analyzed. Research results demonstrate that in the design process of centrifugal pumps, decreasing the wall roughness appropriately during the cavitation development and critical cavitation is important to effectively improve the cavitation performance of pumps. Moreover, a number of nucleation sites on the blade surface increase with the increase in wall roughness, thereby expanding the low-pressure area of the blade. Research conclusions can provide theoretical references to improve cavitation performance and optimize the structural design of the pump.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 60
Author(s):  
Khaled Alawadhi ◽  
Bashar Alzuwayer ◽  
Tareq Ali Mohammad ◽  
Mohammad H. Buhemdi

Since centrifugal pumps consume a mammoth amount of energy in various industrial applications, their design and optimization are highly relevant to saving maximum energy and increasing the system’s efficiency. In the current investigation, a centrifugal pump has been designed and optimized. The study has been carried out for the specific application of transportation of slurry at a flow rate of 120 m3/hr to a head of 20 m. For the optimization process, a multi-objective genetic algorithm (MOGA) and response surface methodology (RSM) have been employed. The process is based on the mean line design of the pump. It utilizes six geometric parameters as design variables, i.e., number of vanes, inlet beta shroud, exit beta shroud, hub inlet blade draft, Rake angle, and the impeller’s rotational speed. The objective functions employed are pump power, hydraulic efficiency, volumetric efficiency, and pump efficiency. In this reference, five different software packages, i.e., ANSYS Vista, ANSYS DesignModeler, response surface optimization software, and ANSYS CFX, were coupled to achieve the optimized design of the pump geometry. Characteristic maps were generated using simulations conducted for 45 points. Additionally, erosion rate was predicted using 3-D numerical simulations under various conditions. Finally, the transient behavior of the pump, being the highlight of the study, was evaluated. Results suggest that the maximum fluctuation in the local pressure and stresses on the cases correspond to a phase angle of 0°–30° of the casing that in turn corresponds to the maximum erosion rates in the region.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


Sign in / Sign up

Export Citation Format

Share Document