Indirect Neural Network Adaptive Robust Control of Linear Motor Drive System

Author(s):  
J. Q. Gong ◽  
Bin Yao

In this paper, an indirect neural network adaptive robust control (INNARC) scheme is developed for the precision motion control of linear motor drive systems. The proposed INNARC achieves not only good output tracking performance but also excellent identifications of unknown nonlinear forces in system for secondary purposes such as prognostics and machine health monitoring. Such dual objectives are accomplished through the complete separation of unknown nonlinearity estimation via neural networks and the design of baseline adaptive robust control (ARC) law for output tracking performance. Specifically, recurrent neural network (NN) structure with NN weights tuned on-line is employed to approximate various unknown nonlinear forces of the system having unknown forms to adapt to various operating conditions. The design is actual system dynamics based, which makes the resulting on-line weight tuning law much more robust and accurate than those in the tracking error dynamics based direct NNARC designs in implementation. With a controlled learning process achieved through projection type weights adaptation laws, certain robust control terms are constructed to attenuate the effect of possibly large transient modelling error for a theoretically guaranteed robust output tracking performance in general. Experimental results are obtained to verify the effectiveness of the proposed INNARC strategy. For example, for a typical point-to-point movement, with a measurement resolution level of ±1μm, the output tracking error during the entire execution period is within ±5μm and mainly stays within ±2μm showing excellent output tracking performance. At the same time, the outputs of NNs approximate the unknown forces very well allowing the estimates to be used for secondary purposes such as prognostics.

2011 ◽  
Vol 383-390 ◽  
pp. 290-296
Author(s):  
Yong Hong Zhu ◽  
Wen Zhong Gao

Wavelet neural network based adaptive robust output tracking control approach is proposed for a class of MIMO nonlinear systems with unknown nonlinearities in this paper. A wavelet network is constructed as an alternative to a neural network to approximate unknown nonlinearities of the classes of systems. The proposed WNN adaptive law is used to compensate the dynamic inverse errors of the classes of systems. The robust control law is designed to attenuate the effects of approximate errors and external disturbances. It is proved that the controller proposed can guarantee that all the signals in the closed-loop control system are uniformly ultimately bounded (UUB) in the sense of Lyapunov. In the end, a simulation example is presented to illustrate the effectiveness and the applicability of the suggested method.


2011 ◽  
Vol 1 ◽  
pp. 273-277
Author(s):  
M. Reza Soleymani Yazdi ◽  
Michel Guillot

This paper presents first a newly developed clustered neural network, which incorporates self-organization capacity into the well-known common multilayer perceptron (MLP) architecture. With this addition, it is possible to reduce significantly overall memory degradation of the neuro-controller during on-line training. In the second part of the paper, this clustered multilayer perceptron (CMLP) network is applied and compared to the MLP through modeling and simulations of machining processes. Simulation results presented using machining data demonstrate that the CMLP possesses more powerful modeling capacity than the standard MLP, offers better adaptability to new operating conditions, and finally performs more reliably. During on-line training with machining data about 65% degradation of previously learned information can be observed in the MLP as opposed to only 11% for the CMLP. Finally, an adaptive control scheme intended for on-line optimization of the machining processes is presented. This scheme uses a feed forward CMLP inverse neuro-controller which learns off-line and on-line the relationships between process inputs and output under simulated perturbations (i.e., tool wear and non-homogeneous workpiece material properties). The first results using the CMLP inverse neuro-controller are promising


1999 ◽  
Vol 121 (1) ◽  
pp. 148-154
Author(s):  
T. Efrati ◽  
H. Flashner

A method for tracking control of mechanical systems based on artificial neural networks is presented. The controller consists of a proportional plus derivative controller and a two-layer feedforward neural network. It is shown that the tracking error of the closed-loop system goes to zero while the control effort is minimized. Tuning of the neural network’s weights is formulated in terms of a constrained optimization problem. The resulting algorithm has a simple structure and requires a very modest computation effort. In addition, the neural network’s learning procedure is implemented on-line.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2783
Author(s):  
Yanbin Liu ◽  
Jue Wang ◽  
Luis Gomes ◽  
Weichao Sun

Backstepping method is a successful approach to deal with the systems in strict-feedback form. However, for networked control systems, the discontinuous virtual law caused by state quantization introduces huge challenges for its applicability. In this article, a quantized adaptive robust control approach in backsetpping framework is developed in this article for networked strict-feedback nonlinear systems with both state and input quantization. In order to prove the efficiency of the designed control scheme, a novel form of Lyapunov candidate function was constructed in the process of analyzing the stability, which is applicable for the systems with nondifferentiable virtual control law. In particular, the state and input quantizers can be in any form as long as they meet the sector-bound condition. The theoretic result shows that the tracking error is determined by the pregiven constants and quantization errors, which are also verified by the simulation results.


Sign in / Sign up

Export Citation Format

Share Document