Application of Multivariable Adaptive Control to Automotive Air Conditioning Systems

Author(s):  
Rajat Shah ◽  
Andrew G. Alleyne ◽  
Bryan P. Rasmussen

This paper presents the application of a multivariable adaptive control strategy to a typical automotive air conditioning system. First, an experimentally validated physical model for the air conditioning cycle is introduced. This is followed by the application of a multi-input multioutput (MIMO) parameter estimation algorithm to recursively identify an equivalent discrete time state space model of the system. A Linear Quadratic Regulator (LQR) design is implemented on the estimated model with the objectives of reference tracking and disturbance rejection. Simulation studies are performed to explore the idea of modulating the electronic expansion valve opening and air flow rate over the evaporator for controlling the efficiency and capacity of a general automotive air conditioning unit. The results demonstrate the efficacy of the MIMO controller for these objectives.

Author(s):  
R. V. Grandhi ◽  
H. Cheng ◽  
S. S. Kumar

Abstract This paper presents a systematic methodology for the design of process parameters for nonisothermal forgings. The finite element approach is used for deformation and thermal analyses, and an optimal control strategy is used for the process parameter design. A state-space model is developed for representing the coupled deformation and thermal behavior using rigid viscoplastic formulation. Design constraints on strain-rates and temperature variation are imposed for achieving the desired forging conditions. The linear quadratic regulator (LQR) theory for finite time control is used in designing the ram velocity and initial die temperature. The approach is demonstrated on an axisymmetric disc forging and a plane strain channel section forging, under nonisothermal conditions.


2016 ◽  
Vol 6 (2) ◽  
pp. 11 ◽  
Author(s):  
Khaled M Goher

<p class="1Body">This paper presents mathematical modelling and control of a two-wheeled single-seat vehicle. The design of the vehicle is inspired by the Personal Urban Mobility and Accessibility (PUMA) vehicle developed by General Motors® in collaboration with Segway®. The body of the vehicle is designed to have two main parts. The vehicle is activated using three motors; a linear motor to activate the upper part in a sliding mode and two DC motors activating the vehicle while moving forward/backward and/or manoeuvring. Two stages proportional-integral-derivative (PID) control schemes are designed and implemented on the system models. The state space model of the vehicle is derived from the linearized equations. Controller based on the Linear Quadratic Regulator (LQR) and the pole placement techniques are developed and implemented. Further investigation of the robustness of the developed LQR and the pole placement techniques is emphasized through various experiments using an applied impact load on the vehicle.</p>


Author(s):  
Trong-Thang Nguyen

<span>This research aims to propose an optimal controller for controlling the speed of the Direct Current (DC) motor. Based on the mathematical equations of DC Motor, the author builds the equations of the state space model and builds the linear quadratic regulator (LQR) controller to minimize the error between the set speed and the response speed of DC motor. The results of the proposed controller are compared with the traditional controllers as the PID, the feed-forward controller. The simulation results show that the quality of the control system in the case of LQR controller is much higher than the traditional controllers. The response speed always follows the set speed with the short conversion time, there isn't overshoot. The response speed is almost unaffected when the torque impact on the shaft is changed.</span>


2020 ◽  
Vol 60 (3) ◽  
pp. 197-205
Author(s):  
Nasir Ahmad Al-Awad

In this paper, the heading control of a large ship is enhanced with a specific end goal, to check the unwanted impact of the waves on the actuator framework. The Nomoto model is investigated to describe the ship’s guiding progression. First and second order models are considered here. The viability of the models is examined based on the principal properties of the Nomoto model. Different controllers are proposed, these are Proportional Integral Derivative (PID), Linear Quadratic Regulator (LQR) and Model Reference Adaptive Control Genetic optimization Algorithm (MRAC-GA) for a ship heading control. The results show that the MRAC-GA controller provides the best results to satisfy the design requirements. The Matlab/Simulink tool is utilized to demonstrate the proposed arrangement in the control loop.


Author(s):  
Kevin M. Farinholt ◽  
Donald J. Leo

Abstract An investigation of the natural frequencies and mode shapes associated with sealed conical bores having actuating boundary conditions is presented. Beginning with the one dimensional wave equation for spherically expanding waves, modal characteristics are developed as functions of cone geometry and actuator parameters. This paper presents both analytical and experimental comparisons for the purpose of validating model and development techniques. An investigation of the orthogonality and adjointness of the solution is presented. A discussion of incorporating driving forces in the system model for the purpose of coupling control actuators with internal acoustics is also included. Including these driving forces, a state space model of the system is developed for the purpose of applying modern feedback control. This paper concludes with a study on applying Linear Quadratic Regulator techniques to this system, relating tradeoffs between spatially averaged pressure and control voltages. The results of our simulations indicate that pressure reductions of 30% are attainable with average control voltages of 14.4 volts, given an example geometry.


Author(s):  
Jesús-Antonio Hernández-Riveros ◽  
Jorge Humberto Urrea-Quintero ◽  
Cindy Vanessa Carmona-Cadavid

In control systems, the actual output is compared with the desired value so a corrective action maintains an established behavior. The industrial controller most widely used is the proportional integral derivative (PID). For PIDs, the process is represented in a transfer function. The linear quadratic regulator (LQR) controller needs a state space model. The process behavior depends on the setting of the controller parameters. Current trends in estimating those parameters optimize an integral performance criterion. In this chapter, a unified tuning method for controllers is presented, the evolutionary algorithm MAGO optimizes the parameters of several controllers minimizing the ITAE index, applied on benchmark plants, operating on servo and regulator modes, and representing the system in both transfer functions and differential equation systems. The evolutionary approach gets a better overall performance comparing with traditional methods. The evolutionary method is indeed better than the classical, eliminating the uncertainty in the controller parameters. Better results are yielded with MAGO algorithm than with optimal PID, optimal-robust PID, and LQR.


Author(s):  
Iman Sadeghzadeh ◽  
Ankit Mehta ◽  
Youmin Zhang

This paper proposes a useful approach to Fault Tolerant Control (FTC) based on the Model Reference Adaptive Control (MRAC) technique with application to a quadrotor helicopter Unmanned Aerial Vehicle (UAV) in hovering as well as trajectory tracking flight in order to control and keep the desired height and trajectory of the quadrotor helicopter in both normal conditions and in the presence of faults in one or more actuators. A Linear Quadratic Regulator (LQR) controller is used in cooperation with the MRAC to control the pitch and roll attitude of the helicopter. Three cases of fault are considered: 1) simulated fault in all the four actuators; 2) simulated fault in back and right motors; 3) a physical damage of 23% of one of the four propellers during autonomous flight. It can be seen from the test results that under the faulty and damage conditions MRAC controller provided a good response of the quadrotor UAV and result in safe landings of the quadrotor.


2016 ◽  
Vol 819 ◽  
pp. 216-220
Author(s):  
Firdaus Mat Jusoh ◽  
Henry Nasution ◽  
Azhar Abdul Aziz ◽  
Sumeru ◽  
Afiq Aiman Dahlan ◽  
...  

An automotive air conditioning system that uses thermal expansion valve (TEV) as an expansion device. The pressure drop from the condenser and evaporator pressure is considered an isenthalpic process (constant enthalpy), where this process causes energy loss (entropy generation) in the expansion process. The ejector recovers energy losses, which was previously lost in the expansion valve, and an ejector can be used to generate isentropic condition in the expansion process. The use of an ejector as an expansion device in this study can reduce power consumption of the compressor and increase cooling capacity of the evaporator. The experiments were conducted with temperature set-points of the conditioned space of 21, 22 and 23°C with internal heat loads of 100, 200 and 400 W. Measurements were taken during the one hour experimental period at a time interval of five minutes. The experiment results indicate that the ejector system is better than TEV and save fuel.


Sign in / Sign up

Export Citation Format

Share Document