Localization and Follow-the-Leader Control of a Heterogeneous Group of Mobile Robots

Author(s):  
Jiangyang Huang ◽  
Shane M. Farritor ◽  
Ala’ Qadi ◽  
Steve Goddard

This paper investigates the control and localization of a heterogeneous (different sensor, mechanical, computational capabilities) group of mobile robots. The group considered here has several inexpensive sensor-limited and computationally-limited robots which follow a leader robot in a desired formation over long distances. This situation is similar to a search, de-mining, or planetary exploration situation where there are several deployable/disposable robots led by a more sophisticated leader. Specifically, the robots in this paper are designed for highway safety applications where they automatically deploy and maneuver safety barrels commonly used to control traffic in highway work zones. Complex sensing and computation are performed by the leader while the followers perform simple operations under the leader’s guidance. This architecture allows followers to be simple, inexpensive and have minimal sensors. Theoretical and statistical analysis of a tracking-based localization method is provided. A simple follow-the-leader control method is also presented. Experimental results of localization and follow-the-leader formation-motion are included.

Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 298 ◽  
Author(s):  
Jyun-Yu Jhang ◽  
Cheng-Jian Lin ◽  
Kuu-Young Young

This study provides an effective cooperative carrying and navigation control method for mobile robots in an unknown environment. The manager mode switches between two behavioral control modes—wall-following mode (WFM) and toward-goal mode (TGM)—based on the relationship between the mobile robot and the unknown environment. An interval type-2 fuzzy neural controller (IT2FNC) based on a dynamic group differential evolution (DGDE) is proposed to realize the carrying control and WFM control for mobile robots. The proposed DGDE uses a hybrid method that involves a group concept and an improved differential evolution to overcome the drawbacks of the traditional differential evolution algorithm. A reinforcement learning strategy was adopted to develop an adaptive WFM control and achieve cooperative carrying control for mobile robots. The experimental results demonstrated that the proposed DGDE is superior to other algorithms at using WFM control. Moreover, the experimental results demonstrate that the proposed method can complete the task of cooperative carrying, and can realize navigation control to enable the robot to reach the target location.


2019 ◽  
Vol 30 ◽  
pp. 12005
Author(s):  
Elena Efremova ◽  
Alexander Dmitriev ◽  
Lev Kuzmin ◽  
Manvel Petrosyan

A method for wireless distance measurement using ultrawideband chaotic radio pulses based on statistical analysis is proposed. Experimental results are discussed.


2015 ◽  
Vol 58 (8) ◽  
pp. 1299-1317 ◽  
Author(s):  
Liang Ding ◽  
HaiBo Gao ◽  
ZongQuan Deng ◽  
YuanKai Li ◽  
GuangJun Liu ◽  
...  

2018 ◽  
Vol 38 (5) ◽  
pp. 558-567 ◽  
Author(s):  
Hua Chen ◽  
Lei Chen ◽  
Qian Zhang ◽  
Fei Tong

Purpose The finite-time visual servoing control problem is considered for dynamic wheeled mobile robots (WMRs) with unknown control direction and external disturbance. Design/methodology/approach By using finite-time control method and switching design technique. Findings First, the visual servoing kinematic WMR model is developed, which can be converted to the dynamic chained-form systems by using a state and input feedback transformation. Then, for two decoupled subsystems of the chained-form systems, according to the finite-time stability control theory, a discontinuous three-step switching control strategy is proposed in the presence of uncertain control coefficients and external disturbance. Originality/value A class of discontinuous anti-interference control method has been presented for the dynamic nonholonomic systems.


2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4181 ◽  
Author(s):  
Chun-Hui Lin ◽  
Shyh-Hau Wang ◽  
Cheng-Jian Lin

In this paper, a navigation method is proposed for cooperative load-carrying mobile robots. The behavior mode manager is used efficaciously in the navigation control method to switch between two behavior modes, wall-following mode (WFM) and goal-oriented mode (GOM), according to various environmental conditions. Additionally, an interval type-2 neural fuzzy controller based on dynamic group artificial bee colony (DGABC) is proposed in this paper. Reinforcement learning was used to develop the WFM adaptively. First, a single robot is trained to learn the WFM. Then, this control method is implemented for cooperative load-carrying mobile robots. In WFM learning, the proposed DGABC performs better than the original artificial bee colony algorithm and other improved algorithms. Furthermore, the results of cooperative load-carrying navigation control tests demonstrate that the proposed cooperative load-carrying method and the navigation method can enable the robots to carry the task item to the goal and complete the navigation mission efficiently.


Author(s):  
Ana Maria Elias ◽  
Zohar J. Herbsman

Construction sites or work zones create serious disruptions in the normal flow of traffic, resulting in major inconveniences for the traveling public. Furthermore, these work zones create safety hazards that require special consideration. Current legislation and programs, at both state and national levels, emphasize the need for a better understanding of work zone problems to address work zone safety. This reality—coupled with the temporary closure of more miles of highway every year for rehabilitation and maintenance—makes the analysis of safety at construction sites a serious matter. A summary of a comprehensive study associated with the development of a new practical approach to address highway safety in construction zones is presented. Because empirical models require sample sizes that are not attainable due to the intrinsic scarcity of construction zone accident data, the problem was studied from the point of view of risk analysis. Monte Carlo simulations were used to develop risk factors. These factors are meant to be included in the calculations of additional user costs for work zones, or simply applied as risk measurements, to optimize the length and duration of closures for highway reconstruction and rehabilitation projects. In this way, it will be possible to assess the danger of work zones to the traveling public and minimize adverse effect of work zones on highway safety.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Chen ◽  
Shen Xu ◽  
Lulu Chu ◽  
Fei Tong ◽  
Lei Chen

In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.


2014 ◽  
Vol 511-512 ◽  
pp. 101-104 ◽  
Author(s):  
Yang Xue ◽  
Jun Tao Yang ◽  
Ya Ling Dong ◽  
Jia Li Shen ◽  
Ru Peng ◽  
...  

This paper presents a new approach for obstacle avoidance of small mobile robots, which combine the position sensitive detector (PSD) with digital compass. It is important for an autonomous robot to explore its surroundings in performing the task of localization and navigation for searching. Because of the complexity of the environment, one simple kind of sensors is not sufficient for robot to accomplish these tasks. In this paper, the small mobile robots are enabled to identify barriers and distinguish surroundings by using the angle signal from the digital compass which is generally mounted on the robot. Experimental results indicate that this approach based on digital compass shows great potential in autonomous robot obstacle avoidance.


2019 ◽  
Vol 04 (01) ◽  
pp. 1842005
Author(s):  
Ryosuke Tsumura ◽  
Yusuke Takishita ◽  
Hiroyasu Iwata

Because fine needles can easily be deflected, accurate needle insertion is often difficult. Lower abdominal insertion is particularly difficult because of less imaging feedback; thus, an approach for allowing a straight insertion path by minimizing deflection is beneficial in cases of lower abdominal insertion. Although insertion with axial rotation can minimize deflection, the rotational insertion may cause tissue damage. Therefore, we established a novel insertion method for minimizing both deflection and tissue damage by combining rotation and vibration. Using layered tissues, we evaluated the effect of a combination of rotation and vibration in terms of deflection and tissue damage, which were measured by the insertion force and torque, and the area of the hole created by the needle using histological tissue sections to measure tissue damage. The experimental results demonstrated that insertion with unidirectional rotation is risky in terms of tissue wind-up, while insertion with bidirectional rotation can decrease deflection and avoid wind-up. We also found that insertion with vibration can decrease the insertion force and torque. Therefore, insertion with a combination of bidirectional rotation and vibration can minimize needle deflection and tissue damage, including the insertion force and torque and the hole area.


Sign in / Sign up

Export Citation Format

Share Document