scholarly journals Solution of Abel’s Integral Equation Using Tikhonov Regularization

Author(s):  
K. J. Daun ◽  
K. A. Thomson ◽  
F. Liu ◽  
G. J. Smallwood

This paper presents a method based on Tikhonov regularization for solving one-dimensional inverse tomography problems that arise in combustion applications. In this technique, Tikhonov regularization transforms the ill-conditioned set of equations generated by onion-peeling deconvolution into a well-conditioned set that is more stable to measurement errors that arise in experimental settings. The performance of this method is compared to that of onion-peeling and Abel three-point deconvolution by solving for a known field variable distribution from projected data contaminated with artificially-generated error. The results show that Tikhonov deconvolution provides a more accurate field distribution than onion-peeling and Abel three-point deconvolution, and is more stable than the other two methods as the distance between projected data points decreases.

2015 ◽  
Vol 28 (1) ◽  
pp. 77-84
Author(s):  
Mey de ◽  
Mariusz Felczak ◽  
Bogusław Więcek

Cooling of heat dissipating components has become an important topic in the last decades. Sometimes a simple solution is possible, such as placing the critical component closer to the fan outlet. On the other hand this component will heat the air which has to cool the other components further away from the fan outlet. If a substrate bearing a one dimensional array of heat dissipating components, is cooled by forced convection only, an integral equation relating temperature and power is obtained. The forced convection will be modelled by a simple analytical wake function. It will be demonstrated that the integral equation can be solved analytically using fractional calculus.


Author(s):  
M. G. Smith

AbstractThe double integral equation, which takes the place of the Milne equation in the one-dimensional problem, is derived from the governing partial differentio-integral equations. An analytical solution of the problem of a distribution of point sources on a plane, when the other boundaries are at infinity, is then found. The possibility of more complicated boundary conditions is discussed.


2006 ◽  
Vol 6 (3) ◽  
pp. 264-268
Author(s):  
G. Berikelashvili ◽  
G. Karkarashvili

AbstractA method of approximate solution of the linear one-dimensional Fredholm integral equation of the second kind is constructed. With the help of the Steklov averaging operator the integral equation is approximated by a system of linear algebraic equations. On the basis of the approximation used an increased order convergence solution has been obtained.


Author(s):  
Joseph F. Boudreau ◽  
Eric S. Swanson

This chapter deals with two related problems occurring frequently in the physical sciences: first, the problem of estimating the value of a function from a limited number of data points; and second, the problem of calculating its value from a series approximation. Numerical methods for interpolating and extrapolating data are presented. The famous Lagrange interpolating polynomial is introduced and applied to one-dimensional and multidimensional problems. Cubic spline interpolation is introduced and an implementation in terms of Eigen classes is given. Several techniques for improving the convergence of Taylor series are discussed, including Shank’s transformation, Richardson extrapolation, and the use of Padé approximants. Conversion between representations with the quotient-difference algorithm is discussed. The exercises explore public transportation, human vision, the wine market, and SU(2) lattice gauge theory, among other topics.


2008 ◽  
Vol 45 (03) ◽  
pp. 879-887 ◽  
Author(s):  
Nader Ebrahimi

Nanosystems are devices that are in the size range of a billionth of a meter (1 x 10-9) and therefore are built necessarily from individual atoms. The one-dimensional nanosystems or linear nanosystems cover all the nanosized systems which possess one dimension that exceeds the other two dimensions, i.e. extension over one dimension is predominant over the other two dimensions. Here only two of the dimensions have to be on the nanoscale (less than 100 nanometers). In this paper we consider the structural relationship between a linear nanosystem and its atoms acting as components of the nanosystem. Using such information, we then assess the nanosystem's limiting reliability which is, of course, probabilistic in nature. We consider the linear nanosystem at a fixed moment of time, say the present moment, and we assume that the present state of the linear nanosystem depends only on the present states of its atoms.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsen Alipour ◽  
Dumitru Baleanu ◽  
Fereshteh Babaei

We introduce a new combination of Bernstein polynomials (BPs) and Block-Pulse functions (BPFs) on the interval [0, 1]. These functions are suitable for finding an approximate solution of the second kind integral equation. We call this method Hybrid Bernstein Block-Pulse Functions Method (HBBPFM). This method is very simple such that an integral equation is reduced to a system of linear equations. On the other hand, convergence analysis for this method is discussed. The method is computationally very simple and attractive so that numerical examples illustrate the efficiency and accuracy of this method.


1970 ◽  
Vol 37 (2) ◽  
pp. 267-270 ◽  
Author(s):  
D. Pnueli

A method is presented to obtain both upper and lower bound to eigenvalues when a variational formulation of the problem exists. The method consists of a systematic shift in the weight function. A detailed procedure is offered for one-dimensional problems, which makes improvement of the bounds possible, and which involves the same order of detailed computation as the Rayleigh-Ritz method. The main contribution of this method is that it yields the “other bound;” i.e., the one which cannot be obtained by the Rayleigh-Ritz method.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


2012 ◽  
Vol 67 (1) ◽  
pp. 5-10
Author(s):  
Guido J. Reiss ◽  
Martin van Megen

The reaction of bipyridine with hydroiodic acid in the presence of iodine gave two new polyiodide-containing salts best described as 4,4´-bipyridinium bis(triiodide), C10H10N2[I3]2, 1, and bis(4,4´-bipyridinium) diiodide bis(triiodide) tris(diiodine) solvate dihydrate, (C10H10N2)2I2[I3]2 · 3 I2 ·2H2O, 2. Both compounds have been structurally characterized by crystallographic and spectroscopic methods (Raman and IR). Compound 1 is composed of I3 − anions forming one-dimensional polymers connected by interionic halogen bonds. These chains run along [101] with one crystallographically independent triiodide anion aligned and the other triiodide anion perpendicular to the chain direction. There are no classical hydrogen bonds present in 1. The structure of 2 consists of a complex I144− anion, 4,4´-bipyridinium dications and hydrogen-bonded water molecules in the ratio of 1 : 2 : 2. The I144− polyiodide anion is best described as an adduct of two iodide and two triiodide anions and three diiodine molecules. Two 4,4´-bipyridinium cations and two water molecules form a cyclic dimer through N-H· · ·O hydrogen bonds. Only weak hydrogen bonding is found between these cyclic dimers and the polyiodide anions.


Sign in / Sign up

Export Citation Format

Share Document