Bounds on Two-Phase Flow: Part I — Frictional Pressure Gradient in Circular Pipes

Author(s):  
M. M. Awad ◽  
Y. S. Muzychka

Simple rules are developed for obtaining rational bounds for two-phase frictional pressure gradient. Both the lower and upper bounds are based on the separate cylinders formulation. The lower bound is based on turbulent-turbulent flow that uses the Blasius equation to represent the Fanning friction factor. The upper bound is based on an equation that represents well the Lockhart-Martinelli correlation for turbulent-turbulent flow. The model is verified using published experimental data of two-phase frictional pressure gradient versus mass flux at constant mass quality. The published data include different working fluids such as R-12 and R-22 at different mass qualities, different pipe diameters, and different saturation temperatures. It is shown that the published data can be well bounded for a wide range of mass fluxes, mass qualities, pipe diameters and saturation temperatures. The bounds models are also presented in a dimensionless form as two-phase frictional multiplier (φl and φg) versus Lockhart-Martinelli parameter (X) for different working fluids such as R-12, R-22, air-oil and air-water mixtures.

Author(s):  
M. M. Awad ◽  
Y. S. Muzychka

Simple rules are developed for obtaining rational bounds for two-phase frictional pressure gradient in minichannels and microchannels. The lower bound is based on Ali et al. correlation for laminar-laminar flow. This correlation is based on modification of simplified stratified flow model derived from the theoretical approach of Taitel and Dukler for the case of two-phase flow in a narrow channel. The upper bound is based on Chisholm correlation for laminar-laminar flow. The model is verified using published experimental data of two-phase frictional pressure gradient in circular and non-circular shapes. The published data include different working fluids such as air-water mixture and nitrogen-water mixture, and different channel diameters. The bounds models are also presented in a dimensionless form as two-phase frictional multiplier (φl and φg) versus Lockhart-Martinelli parameter (X) for different working fluids such as air-water mixture and nitrogen-water mixture. It is shown that the published data can be well bounded.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
W. G. Sim ◽  
Njuki W. Mureithi

An approximate analytical model, to predict the drag coefficient on a cylinder and the two-phase Euler number for upward two-phase cross-flow through horizontal bundles, has been developed. To verify the model, two sets of experiments were performed with an air–water mixture for a range of pitch mass fluxes and void fractions. The experiments were undertaken using a rotated triangular (RT) array of cylinders having a pitch-to-diameter ratio of 1.5 and cylinder diameter 38 mm. The void fraction model proposed by Feenstra et al. was used to estimate the void fraction of the flow within the tube bundle. An important variable for drag coefficient estimation is the two-phase friction multiplier. A new drag coefficient model has been developed, based on the single-phase flow Euler number formulation proposed by Zukauskas et al. and the two-phase friction multiplier in duct flow formulated by various researchers. The present model is developed considering the Euler number formulation by Zukauskas et al. as well as existing two-phase friction multiplier models. It is found that Marchaterre's model for two-phase friction multiplier is applicable to air–water mixtures. The analytical results agree reasonably well with experimental drag coefficients and Euler numbers in air–water mixtures for a sufficiently wide range of pitch mass fluxes and qualities. This model will allow researchers to provide analytical estimates of the drag coefficient, which is related to two-phase damping.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
M. M. Awad

In this study, a note on mixture density using the Shannak definition of the Froude number is presented (Shannak, B., 2009, “Dimensionless Numbers for Two-Phase and Multiphase Flow,” Proceedings of the International Conference on Applications and Design in Mechanical Engineering (ICADME), Penang, Malaysia, Oct. 11–13, 2009). From the definition of the two-phase Froude number, an expression of the two-phase density is obtained. The definition of the two-phase density can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach in circular pipes, minichannels, and microchannels. We cannot have gas density≤two-phase density≤liquid density for 0≤mass quality≤1. Therefore, attention must be paid when using the obtained expression of the two-phase density in this note at any x value.


Author(s):  
Hee Joon Lee ◽  
Dongyao Liu ◽  
Shi-Chune Yao ◽  
Y. Alyousef

Existing data base and correlations in literature on the micro-channel pressure drop and heat transfer are reviewed. None of the existing correlations can cover the wide range of working fluids, operational conditions and different microchannel dimensions. The importance of the Bond number, which relates the nominal bubble dimension or capillary parameter with the channel size, is revealed. Using the Bond number, improved correlations of pressure drop and heat transfer are established. The new correlations predict the existing data well over wide ranges of working fluids, operational conditions and dimensions of micro-channels. Furthermore, Bond number could be used as a criterion to classify a flow path as a micro-channel or conventional macro-channel.


1974 ◽  
Vol 14 (03) ◽  
pp. 203-215 ◽  
Author(s):  
Jerry D. Ham ◽  
James P. Brill ◽  
C. Kenneth Eilerts

Abstract Data obtained by flowing two-phase fluids through sandstone cores were used to develop empirical equations for computing the pressure gradients and liquid saturations that will occur during the recovery of gas-condensate fluids like those in the Gulf Coast area. Equilibrium saturation may be computed for a given pressure, velocity, and liquid/gas ratio of flow. For this purpose, the minimum liquid flow saturation at high pressures, S, was developed for characterizing a core and a fluid. The effects of saturation on the mobility for Darcy flow and on the coefficient for non-Darcy flow are considered in an equation with parameters in addition to the Klinkenberg and Forchheimer coefficients. All parameters for these equations may be determined parameters for these equations may be determined either by routine measurements or by correlations. Introduction Fluid properties required for computing the transient flow of gas-condensate fluids and data obtained to meet this need were discussed at the 1966 SPE-AIME Fall Meeting. In the following year Dranchuk and Kolada described a means of analyzing laboratory data for nonlinear parameters pertaining to flow of gases. Gewers and Nichol pertaining to flow of gases. Gewers and Nichol investigated the effect of liquid saturation on the non-Darcy-flow term of the pressure-gradient equation. Modine and Fields used this kind of information to simulate turbulent flow in gas wells. An equation is needed for computing a more realistic value of the pressure gradient for flowing two-phase fluids than is possible with the Darcy equation. An equation is needed to compute as a boundary condition the liquid saturation possible in the porous medium near flowing wells. This paper describes two such equations that give effect paper describes two such equations that give effect to pressure, fluid velocity, liquid/gas ratio, and saturation. Seven parameters each required for the pressure-gradient and saturation equations may be pressure-gradient and saturation equations may be calculated by means of correlation equations that utilize routinely measured core properties. Concepts and Equations The Darcy equation was modified to include the Klindenberg effect "slip flow" and the Forchheimer coefficient to represent "inertial" or "turbulent" flow of gases in dry porous media,(1) By controlling the velocity (u) and pressure (p), measuring the gradient (dp/dx) and the viscosity [mu(p)], and calculating the density [p(p)], the properties k, b, and beta were determined for properties k, b, and beta were determined for representative cores by least-squares methods. As a step in the modification of Eq. 1 to obtain an equation applicable to the flow of two-phase fluids, mobility, A, for a two-phase fluid must replace the ratio of a known permeability to a viscosity, for the gas phase(2) The quantities k and mu(p) are to have the same* significance as in Eq. 1, except that mu(p) is the viscosity of a single-phase saturated gas. Relationships of liquid- and gas-phase mobilities, lambda and lambda, to fluid mobility, lambda, have been described in Appendix C of a previous publication. Briefly, lambda = lambda + lambda = f(S, p, F, u) k/mu(p). Now mu(p) is the viscosity of the flowing fluid mu under steady-state conditions only when F = 0.


2008 ◽  
Vol 65 (2) ◽  
pp. 357-374 ◽  
Author(s):  
M. Pinsky ◽  
A. Khain ◽  
H. Krugliak

Abstract The present study is a continuation of the series of studies dedicated to the investigation of cloud droplet collisions in turbulent flow with characteristics that are typical of real clouds. Detailed tables of collision kernels and collision efficiencies calculated in the presence of hydrodynamic interaction of droplets are presented. These tables were calculated for a wide range of turbulent parameters. To illustrate the sensitivity of droplet size distribution (DSD) evolution to the turbulence-induced increase in the collision rate, simulations of DSD evolution are preformed by solving the stochastic kinetic equation for collisions. The results can be applied to cloud modeling. The tables of collision efficiencies and collision kernels are available upon request. Some unsolved problems related to collisions of droplets and ice hydrometeors in turbulent clouds are discussed in the conclusion.


Author(s):  
J F Klausner ◽  
B T Chao ◽  
S L Soo

An improved correlation is presented for annular two-phase frictional pressure drop data for vertical downflow. An ideal dimensionless film thickness based on the vapour volume fraction, a characteristic friction factor based on the two-phase frictional pressure gradient and a Weber number relevant for the interfacial capillary wave structure are the correlating parameters. The proposed new correlating scheme is tested against a wide range of data obtained in this investigation for refrigerant R11 in forced convection boiling and in adiabatic test sections of 19 mm cylindrical cross-section as well as published data for air-water and air-glycerine solution mixtures in the annular flow regime. Over 80 per cent of the measured values fall within ±30 per cent of those predicted from the correlation. Due to the wide range of liquid film thickness covered, 0.05–2.9 mm, its validity extends past the range where previously reported downflow pressure drop correlations fail. A paradox connected with previously reported annular downflow pressure drop correlations based on the liquid-vapour interfacial shear stress is pointed out. Upflow frictional pressure drop data in the annular flow regime can also be correlated by the proposed scheme.


2021 ◽  
Vol 69 (3) ◽  
pp. 263-274
Author(s):  
Thijs Schouten ◽  
Cees van Rhee ◽  
Geert Keetels

Abstract In dredging applications, deep sea mining and land reclamation projects typically large amounts of sediments are transported through pipes in the form of hyper concentrated (40% sediment or more) sediment-water mixtures or slurries. In this paper it is investigated how well a generic Euler-Euler CFD-model is capable to model velocity, concentration profiles and the pressure gradient of sediment above deposition limit velocity in a pipeline. This Euler-Euler solver treats both phases as a continuum with its own momentum and continuity equations. The full kinetic theory for granular flows is accounted for (no algebraic form is used) and is combined with a buoyant k-ε turbulence model for the fluid phase. The influence of the mesh size has been checked and grid convergence is achieved. All numerical schemes used are of second-order accuracy in space. The pressure gradient was calibrated by adjusting the specularity coefficient in one calibration case and kept constant afterwards. Simulations were carried out in a wide range of slurry flow parameters, in situ volume concentration (9–42%), pipe diameter (0.05–0.90 m), particle diameter (90–440 μm) and flow velocity of (3–7 m/s). The model shows satisfactory agreement to experimental data from existing literature.


2013 ◽  
Vol 734-737 ◽  
pp. 1343-1349
Author(s):  
Tong Liu ◽  
Ying Chuan Li ◽  
Hai Quan Zhong

This paper presents a simple two-phase flow model for liquid-cut gas wells, which considers phase slippage and can be applied to various flow patterns. The model is developed from 312 measured pressure losses of gas wells in China, covering a wide range of flow patterns: annular flow, churn flow, and slug flow. Unlike most available methods, this new model introduces a derivation factor,ψ, to modify the void fraction, which not only considers the phase slippage but also unifies the slip model with the homogenous model. Parameter,ψ, is obtained from test data using the regression analyses method. It is a function of gas velocity number, liquid velocity number and liquid viscosity number. Frictional factor is estimated using the simple homogeneous modeling approach. The evaluation results using 145 published data indicate that the new model performed better than the other models.


Sign in / Sign up

Export Citation Format

Share Document