Experimental Observation of Liquid Water Formation in Cathode Side Gas Channel of a Transparent PEM Fuel Cell

Author(s):  
Mingfei Gan ◽  
Lea Der Chen ◽  
P. C. Sui

This paper reports on an experimental observation of water formation in a proton exchange membrane fuel cell (PEMFC). A fuel cell assembly with transparent end plates showing the gas channels is used. The study shows that liquid water can be present inside the gas channel of the fuel cell at a relatively low current density condition. The presence of liquid water could be in the form of mist-flow, suspended droplets, and sporadic liquid-gas two-phase flows, depending on operating conditions of the fuel cell. The voltage of the transparent fuel cell degraded over time, which is thought to be a result due to contamination from the fabrication of the gas channel plates of the transparent fuel cell. Onsets of the liquid droplet formation in gas channels are compared to the qualitative descriptions of homogeneous and heterogeneous nucleation theories.

Author(s):  
D. A. Caulk

This paper describes an approximate method for analyzing two-phase flow of gas and liquid water in fuel cell channels, whose surfaces are sufficiently hydrophilic for liquid water to wick spontaneously into the channel corners. This analysis is used to address the important question of whether the gas flow at typical stoichiometries in such channels is sufficient to remove all the liquid water generated in a proton exchange membrane fuel cell. Since fuel channels are usually much narrower than they are long, it is possible to adopt the usual approximations of lubrication theory and to decompose the general solution for the liquid motion into two parts: (1) that driven by the channel pressure gradient and (2) that driven by surface shear stress from the faster moving gas. When both parts of the solution are combined with the mass balance equations, it is possible to derive a pair of partial differential equations for the water depth and gas flow rate that depend on distance down the channel and time. Steady solutions of these equations are explored to determine the amount of liquid water that accumulates in the channel over a broad range of fuel cell operating conditions.


Author(s):  
Han-Sang Kim ◽  
Tae-Hun Ha ◽  
Sung-Jin Park ◽  
Kyoungdoug Min ◽  
Minsoo Kim

Visualization technique was used to better understand the water build-up phenomena on the cathode side of a proton exchange membrane (PEM) unit fuel cell. In this study, a transparent PEM unit fuel cell with an active area of 25 cm2 was designed and fabricated to allow for the visualization of cathode channel with fuel cell performance characteristics. Two-phase flow due to the electrochemical reaction of fuel cell was experimentally investigated. The images photographed by CCD camera with various cell temperatures (30–50°C) and different inlet humidification levels were presented in this study. Results indicated that the flooding on the cathode side first occurs near the exit of cathode flow channel. As the fuel cell operating temperature increases, it was found that water droplets tend to evaporate easily because of increased saturation vapor pressure and it can have an influence on lowering the flooding level. The approaches of this study can effectively contribute to the detailed researches on water transport phenomena including modeling water transport of an operating PEM fuel cell.


2012 ◽  
Vol 625 ◽  
pp. 53-56 ◽  
Author(s):  
Ning Bao ◽  
Qing Du ◽  
Yan Yin

Water management plays a significant role in enhancing performance of proton exchange membrane fuel cell (PEMFC). Successful water management requires effective removal of liquid water produced by electrochemical reactions. Therefore, it is a critical challenge to understand liquid water movements in flow channels. In the present study, a three-dimensional unsteady two-phase model for the cathode side of PEMFC consisting of gas channel (GC), gas diffusion layer (GDL) and catalyst layer (CL) is developed using FLUENT software with a volume-of-fluid (VOF) method and user-defined-function (UDF). When fuel cells are assembled, the cross sections of gas channel change, resulting in different water droplet movements. The effects of GDL deformations on water droplet movements are discussed.


Author(s):  
D. A. Caulk

This paper describes an approximate method for analyzing two-phase flow of gas and liquid water in fuel cell channels whose surfaces are sufficiently hydrophilic for liquid water to wick spontaneously into the channel corners. This analysis is used to address the important question of whether the gas flow at typical stoichiometries in such channels is sufficient to remove all the liquid water generated in a Proton Exchange Membrane (PEM) fuel cell. Since fuel channels are usually much narrower than they are long, it is possible to adopt the usual approximations of lubrication theory and decompose the general solution for the liquid motion into two parts: (1) that driven by the channel pressure gradient, and (2) that driven by surface shear stress from the faster moving gas. When both parts of the solution are combined with the mass balance equations, it is possible to derive a pair of partial differential equations for the water depth and gas flow rate that depend on distance down the channel and time. Steady solutions of these equations are explored to determine the amount of liquid water that accumulates in the channel over a broad range of fuel cell operating conditions.


Author(s):  
Dusan Spernjak ◽  
Suresh Advani ◽  
Ajay K. Prasad

Liquid water formation and transport was investigated by direct experimental visualization in an operational transparent single-serpentine PEM fuel cell. We examined the effectiveness of various gas diffusion layer (GDL) materials in removing water away from the cathode and through the flow field over a range of operating conditions. Complete polarization curves as well as time evolution studies after step changes in current draw were obtained with simultaneous liquid water visualization within the transparent cell. At similar current density (i.e. water production rate), lower level of cathode flow field flooding indicated that liquid water had been trapped inside the GDL pores and catalyst layer, resulting in lower output voltage. No liquid water was observed in the anode flow field unless cathode GDLs had a microporous layer (MPL). MPL on the cathode side creates a pressure barrier for water produced at the catalyst layer. Water is pushed across the membrane to the anode side, resulting in anode flow field flooding close to the H2 exit.


1999 ◽  
Author(s):  
C. Y. Wang ◽  
Z. H. Wang ◽  
Y. Pan

Abstract Proton exchange membrane (PEM) fuel cells have emerged, in the last decade, as a viable technology for power generation and energy conversion. Fuel cell (FC) engines for vehicular applications possess many attributes such as high fuel efficiency, low emission, quiet and low temperature operation, and modularity. An important phenomenon limiting fuel cell performance is the two-phase flow and transport of fuel and oxidant from flow channels to reaction sites. In this paper a mathematical model is presented to study the two-phase flow dynamics, multi-component transport and electrochemical kinetics in the air cathode, the most important component of the hydrogen PEM fuel cell. A major feature of the present model is that it unifies single- and two-phase analyses for low and high current densities, respectively, and it is capable of predicting the threshold current density corresponding to the onset of liquid water formation in the air cathode. A numerical study based on the finite volume method is then undertaken to calculate the detailed distributions of local current density, oxygen concentration, water vapor concentration and liquid water saturation as well as their effects on the cell polarization curve. The simulated polarization curve and predicted threshold current density corresponding to the onset of liquid water formation for a single-channel, 5cm2 fuel cell compare favorably with experimental results. Quantitative comparisons with experiments presently being conducted at our laboratory will be reported in a forthcoming paper.


Author(s):  
Nicholas Siefert ◽  
Chi-Hsin Ho ◽  
Shawn Litster

Liquid water management is a critical issue in the development of proton exchange membrane (PEM) fuel cells. Liquid water produced electrochemically can accumulate and flood the microchannels in the cathodes of PEM fuel cells. Since the liquid coverage of the cathode can fluctuate in time for two-phase flow, the rate of oxygen transport to the cathode catalyst layer can also fluctuate in time, and this can cause the fuel cell power output to fluctuate. This paper will report experimental data on the voltage loss and the voltage fluctuations of a PEM fuel cell due to flooding as a function of the number of parallel microchannels and the air flow rate stoichiometric ratio. The data was analyzed to identify general scaling relationships between voltage loss and fluctuations and the number of channels in parallel and the air stoichiometric ratio. The voltage loss was found to scale proportionally to the square root of the number of channels divided by the air stoichiometric ratio. The amplitude of the fluctuations was found to be linearly proportional to the number of microchannels and inversely proportional to the air stoichiometric ratio squared. The data was further analyzed by plotting power spectrums and by evaluating the non-linear statistics of the voltage time-series.


Author(s):  
John M. Stockie

The porous electrodes in a proton exchange membrane fuel cell are characterized by multi-phase flow, involving liquid water and multispecies gases, that are undergoing both condensation and catalyzed reactions. Careful management of liquid water and heat in the fuel cell system is essential for optimizing performance. The primary focus of this study is thus on condensation and water transport, neither of which have yet been studied in as much detail as other aspects of fuel cell dynamics. We develop a two-dimensional model for multi-phase flow in a porous medium that captures the fundamental transport processes going on in the electrodes. The governing equations are discretized using a finite volume approach, and numerical simulations are performed in order to determine the effect of changing operating conditions on fuel cell performance.


Author(s):  
Angelo Esposito ◽  
Pierpaolo Polverino ◽  
Cesare Pianese ◽  
Yann G. Guezennec

Proton Exchange Membrane Fuel Cell performance significantly depends on electrode water content. Indeed, an excess of liquid water in the pores of the gas diffusion layer (GDL) and in the gas flow channel (GFC) can drastically bring down the output power. Depending on the operating conditions, liquid water emerging from the GDL micro-channels can form droplets, films or slugs in the GFC. In the regime of droplets formation, the interaction with the gas crossing-flow leads to an oscillating mechanisms that is fundamental to studying the detachment from the GDL surface, as the authors have shown in a previous publication. In this work, a numerical model of a droplet growing on the GDL surface is developed to describe the interaction between droplet cross-flowing gas stream. The droplet shape and its deformation are reconstructed assuming a known geometry. Therefore, a lumped force balance is enforced to determine the center of mass motion law. Oscillation frequencies during growth and at detachment are found as a function of droplet size. The model is also exploited to find the relationship between droplet critical detachment size and gas velocity. The numerical results are compared with the droplet frequency-size and detachment size-gas velocity experimental results previously presented by the authors. The matching between the numerical and experimental data is very good and is a mean of validation for the model. The low computational burden and the conciseness of the results make the model suitable for applications such as control and optimization strategies development to enhance PEMFC performance. Additionally, the model can be exploited to implement monitoring and diagnostic algorithm.


Sign in / Sign up

Export Citation Format

Share Document