Mathematical Modeling and Experimental Study on Building Ceiling System Incorporating Phase Change Material (PCM) for Energy Conservation

Author(s):  
A. Pasupathy ◽  
R. Velraj

Thermal storage plays a major role in a wide variety of industrial, commercial and residential application when there is a mismatch between the supply and demand of energy. Several promising developments are taking place in the field of thermal storage using phase change materials (PCM) in buildings. In the present paper, a detailed study of the thermal performance of a phase change material system for energy conservation in building is analyzed and discussed. An experiment consisting of two identical test houses has been constructed to study the effect of having PCM panel on the roof of the building. One house is constructed without PCM on the room in order to provide a reference case for comparison with the experimental house that includes the phase change material. The PCM is an inorganic eutectic mixture, which has melting temperature in the range of 26 - 28°C. A mathematical model has been developed in which finite volume method is used to predict the thermal behavior of the ceiling system incorporating PCMs. A comparison with the experimental results is also made.

2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


2020 ◽  
Vol 993 ◽  
pp. 920-926
Author(s):  
Bi Chuan Chi ◽  
Yan Yao ◽  
Su Ping Cui

The binary eutectic mixtures of fatty acid esters are promising phase change materials for energy storage application. However, the low thermal conductivity which is a common problem for organic phase change materials restricts their further and better applications. In order to solve the problem, a novel composite phase change material (CPCM) was prepared in this research by using methyl palmitate-methyl stearate (MP-MS), a typical binary eutectic mixture of fatty acid esters, as phase change material and expanded graphite (EG) as heat transfer enhancer. The heat transfer performance of MP-MS/EG CPCM was numerical simulated by finite element analysis software ABAQUS. Numerical simulation results revealed that EG could notably enhance the heat transfer performance of MP-MS eutectic mixture. The heat transfer rate and phase change reaction rate of MP-MS/EG CPCM were 14 times and 3 times that of MP-MS eutectic mixture, respectively.


Author(s):  
Abdullah Nasrallh Olimat ◽  
Ahmad S Awad ◽  
Nabil Abo shaban

This work presents an energy/exergy analysis to investige performance of thermal storage unit which loaded with a commercial phase change material (Plus ICE H190). The influence of fluid parameters on the energy/exergy effectiveness was examined. The temporal changes of the energy and exergy rate and performace of the storage unit are obtained  in the results. Latent heat principle is considered an efficient method to gain a higher effectiveness of system from an energy and exergy aspects. The fluid mass flow rate during charging and discharging periods were 2.50 kg/min and 1.26 kg/min, respectively. The results showed a significant increase of thermal resistance on the thermal storage unit performance. Fluid and phase change material show significant temperature difference on the rate of energy/exergy quantites and the time of melting or soldification. Ther results indicated that the average rate of energy and exergy were 1.3 kW and 0.54 kW, respectively. Wheras, energy and exergy  average rate during discarging periods were 1.1 kW and 0.31 kW, respectively. Also, the global rate during the experimetal periods were about 84% and 54%, respectively.


2015 ◽  
Vol 766-767 ◽  
pp. 451-456 ◽  
Author(s):  
V. Saikrishnan ◽  
P.S. Jagadeesh ◽  
K.R. Jayasuriyaa

An Experimental study on phase change heat energy storage system (PCHES) using Erythritol as a phase change material (PCM) has been carried out. Simple and popularly used domestic solar thermal applications make use of direct radiation energy of the sun for cooking, liquid heating, drying and many others as it is the remarkable potential renewable energy source. Effective utilization of such energy can be made with the development of economically operating phase change heat energy storage (PCHES) which is elemental in spanning the gap between supply and demand of energy. PCHES that stores the latent heat of fusion of phase change materials is provocative because of its huge storage density. An integrated Solar wax melting unit with phase change thermal energy storage using ethylene glycol as heat transfer fluid(HTF) to transfer the heat from parabolic dish collector to the wax melting unit is investigated. In this experimental setup, the paraffin wax container is kept in an insulated heat retrieval unit. Heat stored during the daytime by the PCHES is utilized in the off sunshine hours.


2011 ◽  
Vol 347-353 ◽  
pp. 2801-2804 ◽  
Author(s):  
Quan Ying Yan ◽  
Li Li Jin

Solid-solid phase change material can increase the thermal storage capacity of the wall, decrease the indoor temperature fluctuation and building energy consumption when it was used in the phase change material (PCM) wall. This paper investigated experimentally the phase change temperature and latent heat of polyalcohols binary system with different component, and analyzed the feasibility of phase change wall. The results show that binary systems have suitable phase change temperature and bigger phase change latent. They are ideal phase change materials used in the wall.


2017 ◽  
Vol 6 (3) ◽  
pp. 283
Author(s):  
Abdullah Nasrallh Olimat ◽  
Ahmad S Awad ◽  
Faisal M. AL-Gathain ◽  
Nabil Abo Shaban

This work presents an energy/exergy analysis to investige performance of thermal storage unit which loaded with a commercial phase change material (Plus ICE H190). The influence of fluid parameters on the energy/exergy effectiveness was examined. The temporal changes of the energy and exergy rate and performace of the storage unit are obtained  in the results. Latent heat principle is considered an efficient method to gain a higher effectiveness of system from an energy and exergy aspects. The fluid mass flow rate during charging and discharging periods were 2.50 kg/min and 1.26 kg/min, respectively. The results showed a significant increase of thermal resistance on the thermal storage unit performance. Fluid and phase change material show significant temperature difference on the rate of energy/exergy quantites and the time of melting or soldification. Ther results indicated that the average rate of energy and exergy were 1.3 kW and 0.54 kW, respectively. Wheras, energy and exergy  average rate during discarging periods were 1.1 kW and 0.31 kW, respectively. Also, the global rate during the experimetal periods were about 84% and 54%, respectively.Article History: Received July 6th 2017; Received in revised form September 15th 2017; Accepted 25th Sept 2017; Available onlineHow to Cite This Article: Olimat, A.N., Awad, A.S., Al-Gathain, F.M., and Shaban, N.A.. (2017) Performance of Loaded Thermal Storage Unit With A Commercial Phase Change Materials Based on Energy and Exergy Analysis. International Journal of Renewable Energy Develeopment, 6(3),283-290.https://doi.org/10.14710/ijred.6.3.283-290


Author(s):  
C. Castello´n ◽  
M. Medrano ◽  
J. Roca ◽  
G. Fontanals ◽  
L. F. Cabeza

Phase Change Materials (PCMs) have been considered for thermal storage in buildings since 1980’s. With the advent of PCM implemented in gypsum board, plaster, concrete or other wall covering material, thermal storage can be part of the building structure even for light weight buildings. The new techniques of microencapsulation opened many possibilities in buildings applications. An innovative concrete with PCM was developed using a commercial microencapsulated PCM, with a melting point of 26°C and a phase change enthalpy of 110 kJ/kg. The first experiment was the inclusion of a microencapsulated PCM in concrete and the construction of a small room-sized cubicle with this new PCM-concrete. A second cubicle with the exact same characteristics and orientation, but built with standard concrete, was located next to the first one as the reference case. In 2005 and 2006 the behaviour of such cubicles was tested. Later on, a Trombe wall was added to the cubicles to investigate its influence during autumn and winter. The increase of the numbers of hours at which the cubicle with PCM is within the comfort zone defined by ASHRAE with respect to the cubicle without PCM is given.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1619
Author(s):  
Mohammad Ghalambaz ◽  
Hayder I. Mohammed ◽  
Jasim M. Mahdi ◽  
Amir Hossein Eisapour ◽  
Obai Younis ◽  
...  

A twisted-fin array as an innovative structure for intensifying the charging response of a phase-change material (PCM) within a shell-and-tube storage system is introduced in this work. A three-dimensional model describing the thermal management with charging phase change process in PCM was developed and numerically analyzed by the enthalpy-porosity method using commercial CFD software. Efficacy of the proposed structure of fins for performing better heat communication between the active heating surface and the adjacent layers of PCM was verified via comparing with conventional longitudinal fins within the same design limitations of fin material and volume usage. Optimization of the fin geometric parameters including the pitch, number, thickness, and the height of the twisted fins for superior performance of the proposed fin structure, was also introduced via the Taguchi method. The results show that a faster charging rate, higher storage rate, and better uniformity in temperature distribution could be achieved in the PCMs with Twisted fins. Based on the design of twisted fins, it was found that the energy charging time could be reduced by up to 42%, and the energy storage rate could be enhanced up to 63% compared to the reference case of straight longitudinal fins within the same PCM mass limitations.


2020 ◽  
Vol 148 ◽  
pp. 987-1001 ◽  
Author(s):  
Pouyan Talebizadeh Sardari ◽  
Donald Giddings ◽  
David Grant ◽  
Mark Gillott ◽  
Gavin S. Walker

Sign in / Sign up

Export Citation Format

Share Document