The Design and Simulation for a Novel Electroosmotic Micromixer

Author(s):  
Hongjun Song ◽  
Xie-Zhen Yin ◽  
Dawn J. Bennett

The analysis of fluid mixing in microfluidic systems is useful for many biological and chemical applications at the micro scale such as the separation of biological cells, chemical reactions, and drug delivery. The mixing of fluids is a very important factor in chemical reactions and often determines the reaction velocity. However, the mixing of fluids in microfluidics tends to be very slow, and thus the need to improve the mixing effect is a critical challenge for the development of the microfluidic systems. Micromixers can be classified into two types, active micromixers and passive micromixers. Passive micromixers depend on changing the structure and shape of microchannels in order to generate chaotic advection and to increase the mixing area. Thus, the mixing effect is enhanced without any help from external forces. Although passive micromixers have the advantage of being easily fabricated and requiring no external energy, there are also some disadvantages. For example, passive mixers often lack flexibility and power. Passive mixers rely on the geometrical properties of the channel shapes to induce complicated fluid particle trajectories thereby enhancing the mixing effect. On the other hand, active micromixers induce a time-dependent perturbation in the fluid flow. Active micromixers mainly use external forces for mixing including ultrasonic vibration, dielectrophoresis, magnetic force, electrohydrodynamic, and electroosmosis force. However, the complexity of their fabrication limits the application of active micromixers. In this paper we present a novel electroosmotic micromixer using the electroosmotic flow in the cross section to enhance the mixing effect. A DC electric field is applied to a pair of electrodes which are placed at the bottom of the channel. A transverse flow is generated in the cross section due to electroosmotic flow. Numerical simulations are investigated using a commercial software Fluent® which demonstrates how the device enhances the mixing effect. The mixing effect is increased when the magnitude of the electric field increased. The influences of Pe´clet number are also discussed. Finally, a simple fabrication using polymeric materials such as SU-8 and PDMS is presented.

1914 ◽  
Vol 50 (1) ◽  
pp. 211-223
Author(s):  
Angus R. Fulton

CONCLUSIONS1. It may be taken as conclusive that the final distribution of stress at rupture point in a member subjected to an external bending moment is a rectangular one, unless where the cohesion of adjacent layers is not sufficient to withstand the shear induced by the resisting moment of the section.2. That, provided shear does not take place, the neutral axis moves always to the position which reduces the summation of the tensile and compressive stress areas, across a section, to the equilibrant of the external forces. (In the case of a beam this reduces to zero; in that of a hook, at the principal section to the suspended weight.)3. That the total resisting moment of these stresses must be equal to the external bending moment as measured to the neutral axis at rupture point, but that these balancing moments do not differ materially from those measured to an axis obtained by dividing the sectional area into tensile and compressive stress areas which are in inverse proportion to the magnitude of their respective ultimate direct stresses.The advantage of these formulæ are important. It is possible to indicate with certainty the magnitude of the load which will cause rupture in a beam or a hook provided there is known the point of application or the effective arm of the load, the cross-section of the beam or hook, and the breaking strengths of the material when subjected to the different forms of direct loading.


Author(s):  
Reza Monazami ◽  
Shahrzad Yazdi ◽  
Mahmoud A. Salehi

In this paper, a three-dimensional numerical model is developed to analyze the influence of the Joule heating on flow characteristics of an electroosmotic flow through square cross section micro-channels. The governing system of equations consists of three sets of equations: electric potential distribution, flow-field and energy equations. The solution procedure involves three steps. The net charge distribution on the cross section of the micro-channel is computed by solving two-dimensional Poisson-Boltzmann equation using the finite element method. Then, using the computed fluid’s charge distribution, the magnitude of the resulting body force due to interaction of an external electric field with the charged fluid elements is calculated along the micro-channel. Finally, three dimensional coupled Navier-Stokes and energy equations are solved by considering the presence of the electro-kinetic body forces and the volumetric heat generation due to Joule heating for three different external electric field strengths. The results reveal that flow patterns are significantly affected by temperature field distribution caused by Joule heating effect especially for high electric field strength cases.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shigeru Tada

Purpose This study aims to propose a contactless and continuous dielectrophoretic cell-separation device using quadrupole electric field. To examine the separation performance, numerical simulations of the electric field in the cross-section of the glass capillary installed in the center of the quadrupole electrode were conducted. Design/methodology/approach To estimate the magnitude of the dielectrophoretic force induced on cells, electrostatic analysis was performed by using a boundary-fitted coordinate system.Distribution of the electric field and gradient of the electric field square in the cross-section of the glass capillary were simulated for various ratios of radii of the glass capillary to the electrode rod. Findings The distribution of the electric field was found to have a cone-like profile about the center axis of the glass capillary with maximum at the internal surface of the glass capillary. The magnitude of the gradient of electric field square had similar distribution as that of the electric field, but had steeper slope near the internal surface of the glass capillary. The optimal values of the ratio of radii and the applied voltage were also estimated to achieve the local electric field strength suitable for cell separation. Originality/value One major advantage of the proposed device is simple and low fabrication cost, in addition to its contactless structure free from cell damage. Derived knowledge is instructive in achieving high-throughput cell separation without the use of devices of complex structure.


Author(s):  
Reza Baghaei Lakeh ◽  
Majid Molki

A computational and experimental approach is conducted to enhance the convective heat transfer in fully developed laminar flow in parallel-plates configuration. Laminar internal flows are associated with unchanging Nusselt number along the channel due to the fully developed condition of the boundary layer. Inducing a swirling effect along the flow can disturb the flow field and enhance the convective heat transfer from the plates to the flow. The interaction between an electrically-induced secondary flow and the pressure-driven main flow complicates the flow field and causes a swirling effect. In this study, the electric field governing equations are solved numerically using finite volume method. In order to obtain a proper boundary condition for the charge density, an experimental setup was utilized to measure the time-averaged corona current. The distribution of electric field and charge density on the cross section of the channel is obtained and adopted to find the electric body-force at each point. The flow field computations are performed with FLUENT CFD code on a three-dimensional model using second-order upwind scheme. The secondary flow field is imposed on the cross section of the channel by corona discharge. An array of emitting and receiving flat electrodes are embedded in the parallel plates to induce a corona jet on the cross section of the channel. The axial component of velocity along with an array of corona jets gives birth to a swirling flow which can significantly enhance the convection coefficient and Nusselt number in the fully developed regime. This investigation indicated that the convective heat transfer can be enhanced up to 173% with an applied potential of 24 kV.


Author(s):  
Lifeng Wang ◽  
Saisai Liu ◽  
Jianpeng Yi

This paper studies the vibration of Zinc oxide (ZnO) nanowires in electric field via molecular dynamics (MD) simulation and continuum beam models. First, the size effects of the equivalent Young’s modulus and piezoelectric constant of ZnO nanowires are obtained by MD simulation and characterized by core-shell model. The piezoelectric constants of ZnO nanowires decrease with the rising of the size of cross section. The equivalent tensile and bending Young’s modulus of ZnO nanowires in polarization direction increases with the increasing of the cross section size. The equivalent tensile and bending Young’s modulus in polarization direction predicted by core-shell model is in good agreement with MD simulation. Then, the vibration of the cantilevered ZnO nanobeam is simulated by MD. When the cross section size becomes larger, the vibration frequencies predicted by continuum theory coincide with those obtained by MD simulation better. Finally, the effect of electric field on vibration frequency of a ZnO nanowire is studied by MD simulation and continuum beam models. It is found that the natural frequencies rise with the increasing of electric field for the case of positive electric field in polarization direction. But the natural frequencies will decrease with the increasing of negative electric field when the intensity of the electric field is relatively weak. The natural frequency is hard to be obtained when the phase transition is occurring in relatively strong negative electric field. The vibration frequencies of the cantilevered Timoshenko beam with axial force due to the effects of electric field are obtained. The frequencies obtained by Timoshenko beam model agree with MD results very well. The vibration frequencies of the continuum theory agree with MD results better when the size of the cross section increases. The vibration frequencies of the ZnO nanowire keep constant when the direction of electric field is perpendicular to the polarization direction.


2018 ◽  
Vol 191 ◽  
pp. 02019 ◽  
Author(s):  
Petr Satunin

We calculate the cross-section of Breit-Wheeler process γγ → e+e- in external electric field below the perturbative threshold by the semiclassical method of worldline instantons.


2013 ◽  
Vol 23 (1) ◽  
pp. 21
Author(s):  
Dang Van Soa ◽  
Tran Dinh Tham

Photon - axion conversions in staticelectromagnetic fields of the size \(a\times b \times c\) areconsidered in detail by the Feynman diagram methods. Thedifferential cross sections are presented and the numericalevaluations of the total cross section are given. Our result showsthat the conversion cross-sections in the electric field are quitesmall, while in the strong magnetic field, the cross-sections are much enhanced, which can be measurable in current experiments.


2013 ◽  
Vol 91 (8) ◽  
pp. 650-657
Author(s):  
Yi-hao Wang ◽  
De-hua Wang ◽  
Jian-wei Li

The photodetachment of H– ions in a nonuniform electric field has been investigated on the basis of closed orbit theory. Firstly, we give a clear physical description of the detached electron's movement in a nonuniform electric field. Then we put forward an analytical formula for calculating the photodetachment cross section of this system. Our study suggests besides the closed orbit previously reported for the photodetachment of H– in a uniform electric field, some additional closed orbits are produced owing to the effect of the nonuniform electric field. Compared with the photodetachment cross section of H– in a uniform electric field, the oscillation in the cross section of our system becomes much more complicated and the cross section exhibits a multiperiodic oscillatory structure. To show the relation between the oscillation in the photodetachment cross section and the detached electron's classical closed orbits clearly, we make a Fourier transformation for the scaled photodetachment cross section of this system. Each peak in the Fourier transformed cross section corresponds to the contribution of one closed orbit. This study provides a new understanding of the photodetachment of negative ions in the presence of a nonuniform electric field.


Sign in / Sign up

Export Citation Format

Share Document