Influence of Pulse Repetition Rate on Cavitation at the Surface of an Object Targeted by Lithotripter Shock Waves

Author(s):  
Yuri A. Pishchalnikov ◽  
Mark M. Kaehr ◽  
James A. McAteer

Stone breakage in shock wave lithotripsy is improved by slowing the rate of shock wave (SW) delivery. Previous studies have shown that increased cavitation at fast pulse repetition frequency (PRF) reduces the tensile phase of the SW, while the leading positive wave is virtually unaffected. Since the tensile component of the SW drives cavitation, and since cavitation at the stone contributes to breakage, it seems likely that increased cavitation along the path to the stone affects cavitation at the stone. Here we present preliminary data suggesting that PRF influences bubble dynamics at the stone. High-speed imaging showed that as PRF increased, bubble density of cavitation clouds increased, and the size of individual bubbles decreased. A new method to measure stresses generated by cavitation was used to show that locally induced stresses from bubble collapse can be greater than the incident SW, and were higher at 0.5Hz than at 2Hz PRF.

2002 ◽  
Vol 112 (3) ◽  
pp. 1183-1195 ◽  
Author(s):  
Oleg A. Sapozhnikov ◽  
Vera A. Khokhlova ◽  
Michael R. Bailey ◽  
James C. Williams ◽  
James A. McAteer ◽  
...  

2011 ◽  
Vol 677 ◽  
pp. 305-341 ◽  
Author(s):  
A. R. JAMALUDDIN ◽  
G. J. BALL ◽  
C. K. TURANGAN ◽  
T. G. LEIGHTON

Recent clinical trials have shown the efficacy of a passive acoustic device used during shock wave lithotripsy (SWL) treatment. The device uses the far-field acoustic emissions resulting from the interaction of the therapeutic shock waves with the tissue and kidney stone to diagnose the effectiveness of each shock in contributing to stone fragmentation. This paper details simulations that supported the development of that device by extending computational fluid dynamics (CFD) simulations of the flow and near-field pressures associated with shock-induced bubble collapse to allow estimation of those far-field acoustic emissions. This is a required stage in the development of the device, because current computational resources are not sufficient to simulate the far-field emissions to ranges of O(10 cm) using CFD. Similarly, they are insufficient to cover the duration of the entire cavitation event, and here simulate only the first part of the interaction of the bubble with the lithotripter shock wave in order to demonstrate the methods by which the far-field acoustic emissions resulting from the interaction can be estimated. A free-Lagrange method (FLM) is used to simulate the collapse of initially stable air bubbles in water as a result of their interaction with a planar lithotripter shock. To estimate the far-field acoustic emissions from the interaction, this paper developed two numerical codes using the Kirchhoff and Ffowcs William–Hawkings (FW-H) formulations. When coupled to the FLM code, they can be used to estimate the far-field acoustic emissions of cavitation events. The limitation of the technique is that it assumes that no significant nonlinear acoustic propagation occurs outside the control surface. Methods are outlined for ameliorating this problem if, as here, computational resources cannot compute the flow field to sufficient distance, although for the clinical situation discussed, this limitation is tempered by the effect of tissue absorption, which here is incorporated through the standard derating procedure. This approach allowed identification of the sources of, and explanation of trends seen in, the characteristics of the far-field emissions observed in clinic, to an extent that was sufficient for the development of this clinical device.


Experiments were conducted to investigate the initiation of an emulsion explosive containing cavities. Cylindrical cavities were created in thin sheets of either gelatine or an ammonium nitrate/sodium nitrate emulsion confined between transparent blocks. Shocks were launched into the sheets with either a flier-plate or an explosive plane-wave generator so as to collapse the cavities asymmetrically. The closure of the cavities and subsequent reaction in the explosive was photographed by using high- speed framing cameras. The collapse of the cavity proceeded in several stages. First, a high-speed jet was formed which crossed the cavity and hit the downstream wall sending out a shock wave into the surrounding material. Secondly, gas within the cavity was heated by rapid compression achieving temperatures sufficient to lead to gas luminescence. Finally, the jet penetrated the downstream wall to form a pair of vortices which travelled downstream with the flow. When such a cavity collapsed in an explosive, a reaction was observed to start in the vapour contained within the cavity and in the material around the heated gas. The ignition of material at the point at which the jet hit was found to be the principal ignition mechanism.


2008 ◽  
Author(s):  
B. W. Skews ◽  
H. Kleine ◽  
D. MacLucas ◽  
K. Takehara ◽  
H. Teranishi ◽  
...  

2015 ◽  
Vol 5 (5) ◽  
pp. 20150017 ◽  
Author(s):  
John R. Blake ◽  
David M. Leppinen ◽  
Qianxi Wang

Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being ‘One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…’. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a ‘paradigm bubble model’ for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet.


1954 ◽  
Vol 31 (4) ◽  
pp. 525-560 ◽  
Author(s):  
J. W. S. PRINGLE

1. The neuromuscular mechanism of sound-production in cicadas has been elucidated by a detailed anatomical and physiological study of Platypleura capitata (Oliv.) and by the analysis of magnetic tape recordings of the song of eight other species in Ceylon. 2. In all cases the song consists of a succession of pulses, the repetition frequency being between 120 and 600/sec. Each pulse is composed of a damped train of sound waves whose frequency is determined by the natural period of vibration of the tymbals. 3. A pulse of sound is emitted when the tymbal suddenly buckles or is restored to its resting position by its natural elasticity; in the song of some species both movements are effective. The tymbal muscles, which are responsible for the buckling, have a myogenic rhythm of activity, initiated, but only slightly controlled in frequency, by impulses in the single nerve fibre supplying each muscle. The two tymbals normally act together. 4. The curvature of the tymbals can be increased by the contraction of accessory muscles, the chief of which are the tensor muscles. This increases the volume of sound emitted at each click and lowers the pulse repetition frequency; the abdomen is raised from the opercula by contraction of the tensor muscles. 5. The tracheal air sacs form a cavity which is approximately resonant to the frequency of tymbal vibration and can be varied in size by expansion of the abdomen. 6. Cicada songs, to the human ear, appear to be of great variety. The differences arise largely from the properties of the mammalian cochlea as a frequency analyser; the degree of coherence of phase between pulses, which is probably without significance to the insect, is of great importance in determining the quality of the sound to a human observer. The songs of three species which resemble respectively a bell, a musical phrase and a strident chatter are analysed from high-speed oscillograms, and the difference in quality of sound is explained by reference to the wave-forms. 7. Some species emit a regular succession of pulses. Others have a slow pattern to their song, produced by the co-ordinated nervous excitation of three functional groups of muscles: (a) the tymbal muscles, producing the sound; (b) the tensor muscles, controlling the amplitude and pulse repetition frequency; (c) the muscles controlling the resonance of the air sacs. Of the nine species recorded in Ceylon, those belonging to the genus Platypleura produce their pattern by using (b) and (c), the tymbal muscle being in continuous rhythmic activity; those of the genus Terpnosia use mainly (a) to interrupt the continuity of emission of sound pulses, with some accompanying change in amplitude and pulse frequency. The remaining species use all three muscle groups, but different patterns of co-ordination produce great differences in song. 8. In one species (Platypleura octoguttata) a distinct courtship song was recorded from a male in close proximity to a female; this ends with attempted copulation. 9. Preliminary electrophysiological experiments show that the chordotonal sensilla associated with the tympana are extremely sensitive to high-pitched sounds. When the song of another cicada is played back through a loudspeaker the impulse pattern in the auditory nerve corresponds to the pulse modulation envelope, with some after-discharge, as in other insect ‘ears’ (Pumphrey, 1940). 10. The function of the song is to assemble the local population of a cicada species (males and females) into a small group. It remains to be determined whether it is the main intersexual stimulus in mating behaviour.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 208
Author(s):  
Peter Reinke ◽  
Jan Ahlrichs ◽  
Tom Beckmann ◽  
Marcus Schmidt

The volume-of-flow method combined with the Rayleigh–Plesset equation is well established for the computation of cavitation, i.e., the generation and transportation of vapor bubbles inside a liquid flow resulting in cloud, sheet or streamline cavitation. There are, however, limitations, if this method is applied to a restricted flow between two adjacent walls and the bubbles’ size is of the same magnitude as that of the clearance between the walls. This work presents experimental and numerical results of the bubble generation and its transportation in a Couette-type flow under the influence of shear and a strong pressure gradient which are typical for journal bearings or hydraulic seals. Under the impact of variations of the film thickness, the VoF method produces reliable results if bubble diameters are less than half the clearance between the walls. For larger bubbles, the wall contact becomes significant and the bubbles adopt an elliptical shape forced by the shear flow and under the influence of a strong pressure gradient. Moreover, transient changes in the pressure result in transient cavitation, which is captured by high-speed imaging providing material to evaluate transient, three-dimensional computations of a two-phase flow.


Sign in / Sign up

Export Citation Format

Share Document