bubble density
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Muhammad Majid Almajid ◽  
Zuhair A. AlYousef ◽  
Othman S. Swaie

Abstract Mechanistic modeling of the non-Newtonian CO2-foam flow in porous media is a challenging task that is computationally expensive due to abrupt gas mobility changes. The objective of this paper is to present a local equilibrium (LE) CO2-foam mechanistic model, which could alleviate some of the computational cost, and its implementation in the Matlab Reservoir Simulation Tool (MRST). Interweaving the LE-foam model into MRST enables users quick prototyping and testing of new ideas and/or mechanistic expressions. We use MRST, the open source tool available from SINTEF, to implement our LE-foam model. The model utilizes MRST automatic differentiation capability to compute the fluxes as well as the saturations of the aqueous and the gaseous phases at each Newton iteration. These computed variables and fluxes are then fed into the LE-foam model that estimates the bubble density (number of bubbles per unit volume of gas) in each grid block. Finally, the estimated bubble density at each grid block is used to readjust the gaseous phase mobility until convergence is achieved. Unlike the full-physics model, the LE-foam model does not add a population balance equation for the flowing bubbles. The developed LE-foam model, therefore, does not add much computational cost to solving a black oil system of equations as it uses the information from each Newton iteration to adjust the gas mobility. Our model is able to match experimental transient foam flooding results from the literature. The chosen flowing foam fraction (Xf) formula dictates to a large extent the behavior of the solution. An appropriate formula for Xf needs to be chosen such that our simulations are more predictive. The work described in this paper could help in prototyping various ideas about generation and coalescence of bubbles as well as any other correlations used in any population balance model. The chosen model can then be used to predict foam flow and estimate economic value of any foam pilot project.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1268
Author(s):  
Pil Gyu Sang ◽  
Deblina Biswas ◽  
Seung Jin Lee ◽  
Sang Min Won ◽  
Donghee Son ◽  
...  

Laser-generated focused ultrasound (LGFU) is an emerging modality for cavitation-based therapy. However, focal pressure amplitudes by LGFU alone to achieve pulsed cavitation are often lacking as a treatment depth increases. This requires a higher pressure from a transmitter surface and more laser energies that even approach to a damage threshold of transmitter. To mitigate the requirement for LGFU-induced cavitation, we propose LGFU configurations with a locally heated focal zone using an additional high-intensity focused ultrasound (HIFU) transmitter. After confirming heat-induced cavitation enhancement using two separate transmitters, we then developed a stacked hybrid optoacoustic-piezoelectric transmitter, which is a unique configuration made by coating an optoacoustic layer directly onto a piezoelectric substrate. This shared curvature design has great practical advantage without requiring the complex alignment of two focal zones. Moreover, this enabled the amplification of cavitation bubble density by 18.5-fold compared to the LGFU operation alone. Finally, the feasibility of tissue fragmentation was confirmed through a tissue-mimicking gel, using the combination of LGFU and HIFU (not via a stacked structure). We expect that the stacked transmitter can be effectively used for stronger and faster tissue fragmentation than the LGFU transmitter alone.


2021 ◽  
Author(s):  
Brad Campbell ◽  
Puneet Agarwal ◽  
Christopher Curtis ◽  
Guangqiang Yang ◽  
Angshuman Singha ◽  
...  

Abstract The objective of this paper is to introduce a new analysis methodology for assessment of riser fatigue due to slugging. Under certain flow regimes, a multiphase (oil-gas-water) flow can result in slug flow, in which a sequence of relatively high density slugs and relatively low density bubbles propagate along the flowline and the riser. The variation of slug and bubble density at a location with time is random, and slug characteristics can also change significantly along the riser length. Due to local and global weight variations, the riser undergoes cycles of bending which cause fatigue. By explicitly modeling full spatial and temporal variability and randomness of slugs, the new analysis method is significantly more accurate than other methods and it captures physics of riser's slugging response. The slugging fatigue of a steel lazy wave riser was analyzed in Orcaflex software by modeling a repeating pair of slug and bubble with constant slug and bubble densities and associated lengths over the 3-hour simulation time. A separate slug train was propagated in five sub-segments of the riser. To model a more accurate and realistic representation of slugging behavior, the time series of density was extracted at each node from the multiphase flow simulator Olga. Statistical and spectral analysis of the Olga output showed that assumptions of constant slug-bubble density, and of slug behavior being uniform over long segments of riser are too simplistic. Therefore, full time series of density at each node was input into the riser analysis using the existing capabilities of Orcaflex software. As the Orcaflex slug form approach was computationally expensive, we also developed an extrenal slug loader, which provides same level of accuracy while being computationally fast and full automated. The new method shows that the cyclic riser response at the touchdown point (TDP) is composed of two parts. One is the relatively short period (~20-60 seconds) fluctuations that occur because of local weight variations as a slug-bubble passes a riser node. The other is the relatively long period (~10-30 minutes) fluctuations that occur due to global weight variations, which are due to spatial integration of density time series over the lower catenary. These long period fluctuations drive the TDP fatigue. Preliminary field measurements with an ROV, while inducing temporary slugging in the riser, confirmed analytical predictions of long period and high amplitude motions at hog bend. This paper presents a new and significantly more accurate method for analyzing riser fatigue due to slugging. Previously unknown behavior of very long period and high amplitude riser motions is identified and explained. SLWR response to slugging can be an important contributor to the overall fatigue design budget especially at the TDP. This work reflects ExxonMobil's on-going efforts to ensure that we maintain safe designs as we adopt systems new to us in new and challenging environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rémi Delaporte-Mathurin ◽  
Mykola Ialovega ◽  
Etienne A. Hodille ◽  
Jonathan Mougenot ◽  
Yann Charles ◽  
...  

AbstractHelium diffusion, clustering and bubble nucleation and growth is modelled using the finite element method. The existing model from Faney et al. (Model Simul Mater Sci Eng 22:065010, 2018; Nucl Fusion 55:013014, 2015) is implemented with FEniCS and simplified in order to greatly reduce the number of equations. A parametric study is performed to investigate the influence of exposure conditions on helium inventory, bubbles density and size. Temperature is varied from 120 K to 1200 K and the implanted flux of 100 eV He is varied from $$10^{17}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 10 17 m - 2 s - 1 to $$5 \times 10^{21}\, {\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . Bubble mean size increases as a power law of time whereas the bubble density reaches a maximum. The maximum He content in bubbles was approximately $$4 \times 10^{8}$$ 4 × 10 8 He at $$5 \times 10^{21}\,{\text{m}^{-2}\, \text{s}^{-1}}$$ 5 × 10 21 m - 2 s - 1 . After 1 h of exposure, the helium inventory varies from $$5 \times 10^{16} \,{\text{m}^{-2}}$$ 5 × 10 16 m - 2 at low flux and high temperature to $$10^{25} \,{\text{m}^{-2}}$$ 10 25 m - 2 at high flux and low temperature. The bubbles inventory varies from $$5 \times 10^{12}$$ 5 × 10 12 bubbles m$$^{-2}$$ - 2 to $$2 \times 10^{19}$$ 2 × 10 19 bubbles m$$^{-2}$$ - 2 . Comparison with experimental measurements is performed. The bubble density simulated by the model is in quantitative agreement with experiments.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 12
Author(s):  
Huigang Wang ◽  
Chengyu Zhang ◽  
Hongbing Xiong

This study investigated the dynamics of vapor bubble growth and collapse for a laser-induced bubble. The smoothed particle hydrodynamics (SPH) method was utilized, considering the liquid and vapor phases as the van der Waals (VDW) fluid and the solid wall as a boundary. We compared our numerical results with analytical solutions of bubble density distribution and radius curve slope near a wall and the experimental bubble shape at a wall, which all obtained a fairly good agreement. After validation, nine cases with varying heating distances (L2 to L4) or liquid heights (h2 to h10) were simulated to reproduce bubbles near or at a wall. Average bubble radius, density, vapor mass, velocity, pressure, and temperature during growth and collapse were tracked. A new recognition method based on bubble density was recommended to distinguish the three substages of bubble growth: (a) inertia-controlled, (b) transition, and (c) thermally controlled. A new precollapse substage (Stage (d)) was revealed between the three growth stages and collapse stage (Stage (e)). These five stages were explained from the out-sync between the bubble radius change rate and vapor mass change rate. Further discussions focused on the occurrence of secondary bubbles, shockwave impact on the wall, system entropy change, and energy conversion. The main differences between bubbles near and at the wall were finally concluded.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 93 ◽  
Author(s):  
Qing Su ◽  
Tianyao Wang ◽  
Jonathan Gigax ◽  
Lin Shao ◽  
Michael Nastasi

The management of radiation defects and insoluble He atoms represent key challenges for structural materials in existing fission reactors and advanced reactor systems. To examine how crystalline/amorphous interface, together with the amorphous constituents affects radiation tolerance and He management, we studied helium bubble formation in helium ion implanted amorphous silicon oxycarbide (SiOC) and crystalline Fe composites by transmission electron microscopy (TEM). The SiOC/Fe composites were grown via magnetron sputtering with controlled length scale on a surface oxidized Si (100) substrate. These composites were subjected to 50 keV He+ implantation with ion doses chosen to produce a 5 at% peak He concentration. TEM characterization shows no sign of helium bubbles in SiOC layers nor an indication of secondary phase formation after irradiation. Compared to pure Fe films, helium bubble density in Fe layers of SiOC/Fe composite is less and it decreases as the amorphous/crystalline SiOC/Fe interface density increases. Our findings suggest that the crystalline/amorphous interface can help to mitigate helium defect generated during implantation, and therefore enhance the resistance to helium bubble formation.


2018 ◽  
Vol 7 (3) ◽  
pp. 141
Author(s):  
D.X Du ◽  
D. Zhang

Foam technology has found wide applications in enhanced oil recovery and greenhouse geological storage. In this paper, a numerical simulate is carried out with the stochastic bubble population balance model on the foam three phase displacement process in a homogeneous oil/water/gas coexistence porous media of liquid. The effects of the maximum equilibrium bubble density nmax and the foam generation rate Kg on foam displacement process is mainly discussed. Numerical results indicate that the oil phase can be displaced well by foam fluid. Larger nmax values lead to higher apparent viscosity of foam and higher the pressure difference, and with the increase of Kg, the number of foam can reach a balance in a short distance, so it has better displacement effect on the oil phase components. The results obtained in this paper have a certain guiding role in understanding the enhanced oil recovery mechanism of foam fluid.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878234 ◽  
Author(s):  
Jia Song ◽  
Likun Bian ◽  
Erfu Yang ◽  
Dongjing Su

The poor mobility and complex target motion estimation are the two main challenges in the anti-ship attack missions of high-speed guided missiles. In this study, a new wake-homing scheme of supercavitating vehicles is proposed using the gradient wake flow phenomenon. The basic principle of the wake-homing with laser detection and the information which can be obtained are studied. According to the idiosyncrasy of laser detection, the geometrical characteristics of the vessel wake, and the bubble distribution characteristics, the three-dimensional model of bubble density gradient in horizontal plane of the maneuvering target ship wake flow is first built; the guidance law based on the gradient wake flow is designed and tested. Then, simulation results show the validity of the model wake, the guidance law based on the wake gradient information can accurately track the target. From the simulation results, we also can see that the new wake-homing scheme effectively improve the hit probability, reduce the range of loss, reduce power consumption and gentle guidance trajectory, greatly reduce the mobility requirements of the supercavitating vehicles.


Author(s):  
Stavros Rafail Fostiropoulos ◽  
Ilias Malgarinos ◽  
George Strotos ◽  
Nikolaos Nikolopoulos ◽  
Emmanouil Kakaras ◽  
...  

Bubble dynamics is generally described by the well-known Rayleigh-Plesset (R-P) equation in which the bubblepressure (or equivalently the bubble density) is predefined by assuming a polytropic gas equation of state with common assumptions to include either isothermal or adiabatic bubble behaviour. The present study examines the applicability of this assumption by assuming that the bubble density obeys the ideal gas equation of state, while the heat exchange with the surrounding liquid is estimated as part of the numerical solution. The numerical model employed includes the solution of the Navier-Stokes equations along with the energy equation, while the liquid- gas interface is tracked using the Volume of Fluid (VOF) methodology; phase-change mechanism is assumed to be insignificant compared to bubble heat transfer mechanism. To assess the effect of heat transfer and gas equation of state on bubble behaviour, simulations are also performed for the same initial conditions by using a polytropic equation of state for the bubble phase without solving the energy equation. The accuracy of computations is enhanced by using a dynamic local grid refinement technique which reduces the computational cost and allows for the accurate representation of the interface for the whole duration of the phenomenon in which the bubble size changes significantly. A parametric study performed for various initial bubble sizes and ambient conditions reveals the cases for which the bubble behaviour resembles that of an isothermal or the adiabatic one. Additional to the CFD simulations, a 0-D model is proposed to predict the bubble dynamics. This combines the solution of a modified R-P equation assuming ideal gas bubble content along with an equation for the bubbletemperature based on the 1st law of thermodynamics; a correction factor is used to represent accurately the heattransfer between the two phases.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4691


Sign in / Sign up

Export Citation Format

Share Document