Bubble collapse and the initiation of explosion

Experiments were conducted to investigate the initiation of an emulsion explosive containing cavities. Cylindrical cavities were created in thin sheets of either gelatine or an ammonium nitrate/sodium nitrate emulsion confined between transparent blocks. Shocks were launched into the sheets with either a flier-plate or an explosive plane-wave generator so as to collapse the cavities asymmetrically. The closure of the cavities and subsequent reaction in the explosive was photographed by using high- speed framing cameras. The collapse of the cavity proceeded in several stages. First, a high-speed jet was formed which crossed the cavity and hit the downstream wall sending out a shock wave into the surrounding material. Secondly, gas within the cavity was heated by rapid compression achieving temperatures sufficient to lead to gas luminescence. Finally, the jet penetrated the downstream wall to form a pair of vortices which travelled downstream with the flow. When such a cavity collapsed in an explosive, a reaction was observed to start in the vapour contained within the cavity and in the material around the heated gas. The ignition of material at the point at which the jet hit was found to be the principal ignition mechanism.

2018 ◽  
Vol 8 (6) ◽  
pp. 3614-3618
Author(s):  
K. Naeem ◽  
A. Hussain

Plane wave generator is normally composed of two explosives having dissimilar detonation velocity. It is used for directing the spherically outgoing shock wave front to a planar form. Plane wave generators are utilized to find material behavior under dynamic loading. This paper presents the shock arrival time for two plane wave generators by developed Matlab code and its comparison with Ansys Autodyn. The diameter of both plane wave generators is kept the same. One plane wave generator is composed of Octogen and Barium Nitrate and the other is composed of Octogen and Tri Nitro Toluene. Obtained results were surprisingly in agreement. Maximum and minimum obtained flatness for the plane wave were ±0.56 and ±0.08ms respectively within the whole diameter of the plane wave generator. The developed code can be utilized to find the profile of a plane wave generator, minimizing the time and cost many times.


Author(s):  
Yuri A. Pishchalnikov ◽  
Mark M. Kaehr ◽  
James A. McAteer

Stone breakage in shock wave lithotripsy is improved by slowing the rate of shock wave (SW) delivery. Previous studies have shown that increased cavitation at fast pulse repetition frequency (PRF) reduces the tensile phase of the SW, while the leading positive wave is virtually unaffected. Since the tensile component of the SW drives cavitation, and since cavitation at the stone contributes to breakage, it seems likely that increased cavitation along the path to the stone affects cavitation at the stone. Here we present preliminary data suggesting that PRF influences bubble dynamics at the stone. High-speed imaging showed that as PRF increased, bubble density of cavitation clouds increased, and the size of individual bubbles decreased. A new method to measure stresses generated by cavitation was used to show that locally induced stresses from bubble collapse can be greater than the incident SW, and were higher at 0.5Hz than at 2Hz PRF.


Author(s):  
Aline Cardoso Anastacio ◽  
Jakub Selesovsky ◽  
Jindrich Kucera ◽  
Jiri Pachman
Keyword(s):  

1988 ◽  
Vol 190 ◽  
pp. 409-425 ◽  
Author(s):  
J. P. Dear ◽  
J. E. Field

This paper describes a method for examining the collapse of arrays of cavities using high-speed photography and the results show a variety of different collapse mechanisms. A two-dimensional impact geometry is used to enable processes occurring inside the cavities such as jet motion, as well as the movement of the liquid around the cavities, to be observed. The cavity arrangements are produced by first casting water/gelatine sheets and then forming circular holes, or other desired shapes, in the gelatine layer. The gelatine layer is placed between two thick glass blocks and the array of cavities is then collapsed by a shock wave, visualized using schlieren photography and produced from an impacting projectile. A major advantage of the technique is that cavity size, shape, spacing and number can be accurately controlled. Furthermore, the shape of the shock wave and also its orientation relative to the cavities can be varied. The results are compared with proposed interaction mechanisms for the collapse of pairs of cavities, rows of cavities and clusters of cavities. Shocks of kbar (0.1 GPa) strength produced jets of c. 400 m s−1 velocity in millimetre-sized cavities. In closely-spaced cavities multiple jets were observed. With cavity clusters, the collapse proceeded step by step with pressure waves from one collapsed row then collapsing the next row of cavities. With some geometries this leads to pressure amplification. Jet production by the shock collapse of cavities is suggested as a major mechanism for cavitation damage.


1971 ◽  
Vol 38 (1) ◽  
pp. 190-196 ◽  
Author(s):  
E. Y. Harper

The scattering of a plane acoustic shock wave by a cylindrical cavity in an inviscid fluid medium is calculated numerically and compared with a recently obtained asymptotic expansion. In contrast to the scattering by a rigid cylinder, the cavity displays a distinctive shielding effect in the shadow region characterized by a peak exitation and an inverse logarithmic decay. Experimental results are presented which indicate a strong counterpart in plastic shock diffraction.


1997 ◽  
Vol 23 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Jahangir Tavakkoli ◽  
Alain Birer ◽  
Alex Arefiev ◽  
Frederic Prat ◽  
Jean-Yves Chapelon ◽  
...  

2021 ◽  
Author(s):  
Yiwei Feng ◽  
Tiegang Liu ◽  
Xiaofeng He ◽  
Bin Zhang ◽  
Kun Wang

Abstract In this work, we extend the characteristic-featured shock wave indicator based on artificial neuron training to 3D high-speed flow simulation on unstructured mesh. The extension is achieved through dimension splitting. This leads to that the proposed indicator is capable of identifying regions of flow compression in any direction. With this capability, the indicator is further developed to combine with h-adaptivity of mesh refinement to improve resolution with less computational costs. The present indicator provided an attractive alternative for constructing high-resolution, high-efficiency shock-processing method to simulate high-speed inviscid flows.


Sign in / Sign up

Export Citation Format

Share Document