Efficient Parallel Computer Simulation of the Motion Behaviors of Closed-Loop Multibody Systems

Author(s):  
Shanzhong Duan ◽  
Andrew Ries

This paper presents an efficient parallelizable algorithm for the computer-aided simulation and numerical analysis of motion behaviors of multibody systems with closed-loops. The method is based on cutting certain user-defined system interbody joints so that a system of independent multibody subchains is formed. These subchains interact with one another through associated unknown constraint forces fc at the cut joints. The increased parallelism is obtainable through cutting joints and the explicit determination of associated constraint forces combined with a sequential O(n) method. Consequently, the sequential O(n) procedure is carried out within each subchain to form and solve the equations of motion while parallel strategies are performed between the subchains to form and solve constraint equations concurrently. For multibody systems with closed-loops, joint separations play both a role of creation of parallelism for computing load distribution and a role of opening a closed-loop for use of the O(n) algorithm. Joint separation strategies provide the flexibility for use of the algorithm so that it can easily accommodate the available number of processors while maintaining high efficiency. The algorithm gives the best performance for the application scenarios for n>>1 and n>>m, where n and m are number of degree of freedom and number of constraints of a multibody system with closed-loops respectively. The algorithm can be applied to both distributed-memory parallel computing systems and shared-memory parallel computing systems.

2007 ◽  
Vol 129 (12) ◽  
pp. 1234-1242 ◽  
Author(s):  
Himanshu Chaudhary ◽  
Subir Kumar Saha

In order to compute the constraint moments and forces, together referred here as wrenches, in closed-loop mechanical systems, it is necessary to formulate a dynamics problem in a suitable manner so that the wrenches can be computed efficiently. A new constraint wrench formulation for closed-loop systems is presented in this paper using two-level recursions, namely, subsystem level and body level. A subsystem is referred here as the serial- or tree-type branches of a spanning tree obtained by cutting the appropriate joints of the closed loops of the system at hand. For each subsystem, unconstrained Newton–Euler equations of motion are systematically reduced to a minimal set in terms of the Lagrange multipliers representing the constraint wrenches at the cut joints and the driving torques/forces provided by the actuators. The set of unknown Lagrange multipliers and the driving torques/forces associated to all subsystems are solved in a recursive fashion using the concepts of a determinate subsystem. Next, the constraint forces and moments at the uncut joints of each subsystem are calculated recursively from one body to another. Effectiveness of the proposed algorithm is illustrated using a multiloop planar carpet scraping machine and the spatial RSSR (where R and S stand for revolute and spherical, respectively) mechanism.


Author(s):  
Shanzhong Duan ◽  
Kurt S. Anderson

Abstract The paper presents a new hybrid parallelizable low order algorithm for modeling the dynamic behavior of multi-rigid-body chain systems. The method is based on cutting certain system interbody joints so that largely independent multibody subchain systems are formed. These subchains interact with one another through associated unknown constraint forces f¯c at the cut joints. The increased parallelism is obtainable through cutting the joints and the explicit determination of associated constraint loads combined with a sequential O(n) procedure. In other words, sequential O(n) procedures are performed to form and solve equations of motion within subchains and parallel strategies are used to form and solve constraint equations between subchains in parallel. The algorithm can easily accommodate the available number of processors while maintaining high efficiency. An O[(n+m)Np+m(1+γ)Np+mγlog2Np](0<γ<1) performance will be achieved with Np processors for a chain system with n degrees of freedom and m constraints due to cutting of interbody joints.


2021 ◽  
Author(s):  
Friedrich Pfeiffer

Abstract Constraints in multibody systems are usually treated by a Lagrange I - method resulting in equations of motion together with the constraint forces. Going from non-minimal coordinates to minimal ones opens the possibility to project the original equations directly to the minimal ones, thus eliminating the constraint forces. The necessary procedure is described, a general example of combined machine-process dynamics discussed and a specific example given. For a n-link robot tracking a path the equations of motion are projected onto this path resulting in quadratic form linear differential equations. They define the space of allowed motion, which is generated by a polygon-system.


Author(s):  
Paweł Malczyk ◽  
Janusz Fra¸czek

Efficient dynamics simulations of complex multibody systems are essential in many areas of computer aided engineering and design. As parallel computing resources has become more available, researchers began to reformulate existing algorithms or to create new parallel formulations. Recent works on dynamics simulation of multibody systems include sequential recursive algorithms as well as low order, exact or iterative parallel algorithms. The first part of the paper presents an optimal order parallel algorithm for dynamics simulation of open loop chain multibody systems. The proposed method adopts a Featherstone’s divide and conquer scheme by using Lagrange multipliers approach for constraint imposition and dependent set of coordinates for the system state description. In the second part of the paper we investigate parallel efficiency measures of the proposed formulation. The performance comparisons are made on the basis of theoretical floating-point operations count. The main part of the paper is concetrated on experimental investigation performed on parallel computer using OpenMP threads. Numerical experiments confirm good overall efficiency of the formulation in case of modest parallel computing resources available and demonstrate certain computational advantages over sequential versions.


1984 ◽  
Vol 51 (4) ◽  
pp. 899-903 ◽  
Author(s):  
J. W. Kamman ◽  
R. L. Huston

A new automated procedure for obtaining and solving the governing equations of motion of constrained multibody systems is presented. The procedure is applicable when the constraints are either (a) geometrical (for example, “closed-loops”) or (b) kinematical (for example, specified motion). The procedure is based on a “zero eigenvalues theorem,” which provides an “orthogonal complement” array which in turn is used to contract the dynamical equations. This contraction, together with the constraint equations, forms a consistent set of governing equations. An advantage of this formulation is that constraining forces are automatically eliminated from the analysis. The method is applied with Kane’s equations—an especially convenient set of dynamical equations for multibody systems. Examples of a constrained hanging chain and a chain whose end has a prescribed motion are presented. Applications in robotics, cable dynamics, and biomechanics are suggested.


Author(s):  
Márton Kuslits ◽  
Dieter Bestle

Multibody systems and associated equations of motion may be distinguished in many ways: holonomic and nonholonomic, linear and nonlinear, tree-structured and closed-loop kinematics, symbolic and numeric equations of motion. The present paper deals with a symbolic derivation of nonlinear equations of motion for nonholonomic multibody systems with closed-loop kinematics, where any generalized coordinates and velocities may be used for describing their kinematics. Loop constraints are taken into account by algebraic equations and Lagrange multipliers. The paper then focuses on the derivation of the corresponding linear equations of motion by eliminating the Lagrange multipliers and applying a computationally efficient symbolic linearization procedure. As demonstration example, a vehicle model with differential steering is used where validity of the approach is shown by comparing the behavior of the linearized equations with their nonlinear counterpart via simulations.


Author(s):  
Louis L. Flynn ◽  
Rouhollah Jafari ◽  
Ranjan Mukherjee

The design of a new biped robot is proposed in this paper. Based on the concept of a self-propelled wheel, the design offers to provide impact-free motion during walking. The biped robot is composed of a torso and two legs. Each leg has arc-shaped feet that are constrained to move in a manner that essentially allows the robot to roll continuously during walking. The role of the torso is to generate forward and backward motion. The equations of motion of the robot are generated using Lagrange’s equations and constraints are imposed on the motion to generate a walking gait. In the experimental hardware, the constraints are imposed by designing and implementing closed-loop torque control of the actuators. The robot successfully walked down a hallway and data collected from the robot verified the efficacy of the controllers.


2018 ◽  
Vol 22 (2) ◽  
pp. 6-17
Author(s):  
S. V. Nazarov

Relevance of scope of parallel calculations was realized for a long time at the solution of complex scientific and technical challenges, as in connection with low reliability and productivity of computers, and in connection with emergence of the multiprocessor systems and multinuclear processors. The technology of ensuring reliability and high efficiency on the basis of parallel calculations naturally became prevailing in the onboard computing systems (OCS). Now such systems find broad application in aircraft and space equipment, and also in land and water mobile objects. Efficiency of performance of objectives, safety, operational suitability and some other important qualities of mobile objects considerably are defined by ability of the onboard computing system to carry out the functions. Development of the onboard equipment is characterized by constant increase in number of the solved tasks and increase of their complexity, expansion of intellectual and adaptive opportunities. It inevitably leads to complication of BVS, its operating system and the special software. For the period of the solution of the majority of the tasks assigned to BVS rigid temporary restrictions are imposed. Performance of these of the requirement results in need of the organization of parallel computing processes. In this work set of mathematical models, formulations of the tasks and approaches to their decision allowing to construct the schedule of parallel computing process for realization of the information and connected tasks on the multiprocessor onboard computing systems is presented. Models of sets of the solved tasks in the form of the loaded count and in a yarusno-parallel form, the solution of tasks on purposes of the solved tasks to processors and algorithm of drawing up the schedule of parallel computing process are given.


Author(s):  
Hazem A. Attia

Abstract This paper presents a computational method for generating the equations of motion of planar linkages consisting of interconnected rigid bodies. The formulation uses initially the rectangular Cartesian coordinates of an equivalent constrained system of particles to define the configuration of the mechanism. This results in a simple and straightforward procedure for generating the equations of motion. The equations of motion are then derived in terms of relative joint variables through the use of a velocity transformation matrix. The velocity transformation matrix relates the relative joint velocities to the Cartesian velocities. For the open loop case, this process automatically eliminates all of the non-working constraint forces and leads to an efficient integration of the equations of motion. For the closed loop case, suitable joints should be cut and few cut-joints constraint equations should be included for each closed loop. Examples are used to demonstrate the generality and efficiency of the proposed method.


Author(s):  
Joris Naudet ◽  
Dirk Lefeber

In previous work, a method for establishing the equations of motion of open-loop multibody mechanisms was introduced. The proposed forward dynamics formulation resulted in a Hamiltonian set of 2n first order ODE’s in the generalized coordinates q and the canonical momenta p. These Hamiltonian equations were derived from a recursive Newton-Euler formulation. It was shown how an O(n) formulation could be obtained in the case of a serial structure with general joints. The amount of required arithmetical operations was considerably less than comparable acceleration based formulations. In this paper, a further step is taken: the method is extended to constrained multibody systems. Using the principle of virtual power, it is possible to obtain a recursive Hamiltonian formulation for closed-loop mechanisms as well, enabling the combination of the low amount of arithmetical operations and a better evolution of the constraints violation errors, when compared with acceleration based methods.


Sign in / Sign up

Export Citation Format

Share Document