Flow of Nano and Micron Size Particles in a Cylindrical Cavity

Author(s):  
Suresh Ahuja

Flow of particles is analyzed by considering driving force from applied shear energy (rotating augers). against constraints of extrinsic constraints (consolidation, boundary) and intrinsic constraints (cohesion, compressibility and inter-particle forces). Both Discrete Element Method (DEM) and Continuum Models are used to analyze powder flow with DEM uses models at particle level and is therefore requires costly computation where as Continuum Models are less accurate for complicated geometries and free surfaces. The cohesive (tensile) stress for an assembly of cohesive particles is an increasing function of volume fraction but depends only weakly on shear rate. As the particle volume fraction is decreased, the dependence of the tensile stress on shear rate grows, but for all volume fractions, this dependence is much weaker than that of the total stress. Empirical correlations are costly to obtain for predicting developer flow from frequent bench experiments (Freeman tester, Jenike shear cell and Seville tester) and tests in fixtures and housings. A rheological equation can be used to analyze shear stress, normal stress, cohesive stress and dynamic coefficient of friction in a shear cell. Experimental results are compared with the existing models.

2011 ◽  
Vol 236-238 ◽  
pp. 2197-2201
Author(s):  
Yu Yang Zhang ◽  
Shi Xing Wang

Silver nanoparticles pastes were formatted by mixing different volumetric silver nanoparticles with the mixture of 12.7wt% bismuth subgallate and 87.3wt% organic vehicle. Rheological and flocculated properties of silver nanoparticles pastes were examined. All pastes demonstrated pseudoplastic flow behaviors and shear thinning characters over the solids-loading and shear-rate range studied. The viscosities of pastes reduce with increasing the shear rate in a logarithmic plot. G' (storage modulus) and G" (loss modulus) increase with increasing silver nanoparticles content and frequency. At high loading, G' and G" begin to level off and exhibit plateau in the low-frequency range. The appearance of the plateau at low frequency is due to the presence of silver nanoparticles in the system and forming the three-dimensional network structure. The shear stress increases with increasing silver nanoparticles content. Apparent yield value estimated by casson equation exhibits a power-law dependence on particle volume fraction.


2014 ◽  
Vol 917 ◽  
pp. 267-282
Author(s):  
Aisha Ahmed ◽  
A. Maulud ◽  
M. Ramasamy ◽  
Lau Kok Keong ◽  
Mahadzir Shuhaimi

A 2D axi-symmetric, steady state and pressure-based model for the riser of an industrial RFCC unit was developed with ANSYS FLUENT in workbench 13.0. The EulerianEulerian approach was applied to simulate the flow behavior of the two phases and the catalytic cracking reactions. Thek-εgassolid turbulent flow per phase model was used, and the particle-level fluctuations are modeled in the framework of the kinetic theory of granular flow. Two different drag models were used separately to simulate the gas solid interaction in the riser fluidized bed. The 14-lump kinetic model was chosen to describe the complex catalytic cracking of the heavy residual feed stock. The particle volume fraction, velocity and temperature profiles, as well as product yields in the riser were analyzed and validated with results from open literature and the industrial RFCC plant data.


2015 ◽  
Vol 19 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jahar Sarkar

The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction) are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.


2021 ◽  
Author(s):  
Yosephus Ardean Kurnianto Prayitno ◽  
Tong Zhao ◽  
Yoshiyuki Iso ◽  
Masahiro Takei

1999 ◽  
Author(s):  
J. W. Gao ◽  
S. J. White ◽  
C. Y. Wang

Abstract A combined experimental and numerical investigation of the solidification process during gravity casting of functionally graded materials (FGMs) is conducted. Focus is placed on the interplay between the freezing front propagation and particle sedimentation. Experiments were performed in a rectangular ingot using pure substances as the matrix and glass beads as the particle phase. The time evolutions of local particle volume fractions were measured by bifurcated fiber optical probes working in the reflection mode. The effects of various processing parameters were explored. It is found that there exists a particle-free zone in the top portion of the solidified ingot, followed by a graded particle distribution region towards the bottom. Higher superheat results in slower solidification and hence a thicker particle-free zone and a higher particle concentration near the bottom. The higher initial particle volume fraction leads to a thinner particle-free region. Lower cooling temperatures suppress particle settling. A one-dimensional solidification model was also developed, and the model equations were solved numerically using a fixed-grid, finite-volume method. The model was then validated against the experimental results, and the validated computer code was used as a tool for efficient computational prototyping of an Al/SiC FGM.


2021 ◽  
Author(s):  
Bertrand Rollin ◽  
Frederick Ouellet ◽  
Bradford Durant ◽  
Rahul Babu Koneru ◽  
S. Balachandar

Abstract We study the interaction of a planar air shock with a perturbed, monodispersed, particle curtain using point-particle simulations. In this Eulerian-Lagrangian approach, equations of motion are solved to track the position, momentum, and energy of the computational particles while the carrier fluid flow is computed in the Eulerian frame of reference. In contrast with many Shock-Driven Multiphase Instability (SDMI) studies, we investigate a configuration with an initially high particle volume fraction, which produces a strongly two-way coupled flow in the early moments following the shock-solid phase interaction. In the present study, the curtain is about 4 mm in thickness and has a peak volume fraction of about 26%. It is composed of spherical particles of d = 115μm in diameter and a density of 2500 kg.m−3, thus replicating glass particles commonly used in multiphase shock tube experiments or multiphase explosive experiments. We characterize both the evolution of the perturbed particle curtain and the gas initially trapped inside the particle curtain in our planar three-dimensional numerical shock tube. Control parameters such as the shock strength, the particle curtain perturbation wavelength and particle volume fraction peak-to-trough amplitude are varied to quantify their influence on the evolution of the particle cloud and the initially trapped gas. We also analyze the vortical motion in the flow field. Our results indicate that the shock strength is the primary contributor to the cloud particle width. Also, a classic Richtmyer-Meshkov instability mixes the gas initially trapped in the particle curtain and the surrounding gas. Finally, we observe that the particle cloud contribute to the formation of longitudinal vortices in the downstream flow.


2018 ◽  
Vol 7 (12) ◽  
pp. 1400-1407 ◽  
Author(s):  
Nadia M. Krook ◽  
Jamie Ford ◽  
Manuel Maréchal ◽  
Patrice Rannou ◽  
Jeffrey S. Meth ◽  
...  

2010 ◽  
Vol 82 (1) ◽  
pp. 69-86
Author(s):  
Reghan J. Hill

A rigorous microscale electrokinetic model for hydrogel-colloid composites is adopted to compute macroscale profiles of electrolyte concentration, electrostatic potential, and hydrostatic pressure across membranes that separate electrolytes with different concentrations. The membranes are uncharged polymeric hydrogels in which charged spherical colloidal particles are immobilized and randomly dispersed with a low solid volume fraction. Bulk membrane characteristics and performance are calculated from a continuum microscale electrokinetic model (Hill 2006b, c). The computations undertaken in this paper quantify the streaming and membrane potentials. For the membrane potential, increasing the volume fraction of negatively charged inclusions decreases the differential electrostatic potential across the membrane under conditions where there is zero convective flow and zero electrical current. With low electrolyte concentration and highly charged nanoparticles, the membrane potential is very sensitive to the particle volume fraction. Accordingly, the membrane potential - and changes brought about by the inclusion size, charge and concentration - could be a useful experimental diagnostic to complement more recent applications of the microscale electrokinetic model for electrical microrheology and electroacoustics (Hill and Ostoja-Starzewski 2008, Wang and Hill 2008).


Sign in / Sign up

Export Citation Format

Share Document