Nonlinear Dynamics of Electrically-Actuated Carbon Nanotube Resonator

Author(s):  
Hassen M. Ouakad ◽  
Mohammad I. Younis

This paper presents an investigation into the nonlinear dynamics of a carbon nanotube (CNT) actuated electrically by a DC force and an AC harmonic load. The CNT is described by an Euler Bernoulli beam model that accounts for the system nonlinearities due to mid-plane stretching and electrostatic forcing. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic response of the CNT. The static deflection of the CNT and its pull-in voltage are calculated and validated by comparing them to published results. It was found that mid-plane stretching has a major impact on the pull-in prediction of CNT. Dynamic analysis is conducted to explore the nonlinear oscillation of the CNT near its fundamental natural frequency (primary resonance) and near one half, twice, and three times its natural frequency (secondary resonances). The nonlinear analysis is carried out using a shooting technique combined with the Floquet theory to capture periodic orbits and analyze their stability. The results show that these resonances can lead to complex nonlinear dynamics phenomena such as hysteresis, dynamic pull-in, hardening and softening behaviors, and frequencies bands with an inevitable escape from a potential well.

Author(s):  
Hassen M. Ouakad ◽  
Mohammad I. Younis

This work presents an investigation of the nonlinear dynamics of carbon nanotubes (CNTs) when actuated by a dc load superimposed to an ac harmonic load. Cantilevered and clamped-clamped CNTs are studied. The carbon nanotube is described by an Euler–Bernoulli beam model that accounts for the geometric nonlinearity and the nonlinear electrostatic force. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the carbon nanotube. The free-vibration problem is solved using both the reduced-order model and by solving directly the coupled in-plane and out-of-plane boundary-value problems governing the motion of the nanotube. Comparison of the results generated by these two methods to published data of a more complicated molecular dynamics model shows good agreement. Dynamic analysis is conducted to explore the nonlinear oscillation of the carbon nanotube near its fundamental natural frequency (primary-resonance) and near one-half, twice, and three times its natural frequency (secondary-resonances). The nonlinear analysis is carried out using a shooting technique to capture periodic orbits combined with the Floquet theory to analyze their stability. The nonlinear resonance frequency of the CNTs is calculated as a function of the ac load. Subharmonic-resonances are found to be activated over a wide range of frequencies, which is a unique property of CNTs. The results show that these resonances can lead to complex nonlinear dynamics phenomena, such as hysteresis, dynamic pull-in, hardening and softening behaviors, and frequency bands with an inevitable escape from a potential well.


Author(s):  
Hassan Askari ◽  
Ebrahim Esmailzadeh

Nonlinear forced vibration of the nonlocal curved carbon nanotubes is investigated. The governing equation of vibration of a nonlocal curved carbon nanotube is developed. The nonlinear Winkler and Pasternak type foundations are chosen for the nanotube resonator system. Furthermore, the shape of the carbon nanotube system is assumed to be of a sinusoidal curvature form and different types of the boundary conditions are postulated for the targeted system. The Euler-Bernoulli beam theory in conjunction with the Eringen theory are implemented to obtain the partial differential equation of the system. The Galerkin method is applied to obtain the nonlinear ordinary differential equations of the system. For the sake of obtaining the primary resonance of the considered system the multiple time scales method is utilized. The influences of different parameters, namely, the position of the applied force, different forms of boundary condition, amplitude of curvature, and the coefficient of the Pasternak foundation, on the frequency response of the system were fully investigated.


2018 ◽  
Vol 26 (1) ◽  
pp. 125-139
Author(s):  
Ghiocel Groza ◽  
Ana-Maria Mitu ◽  
Nicolae Pop ◽  
Tudor Sireteanu

Abstract The paper is based on the analytical and experimental results from [14], [15] and reveals, by mathematical methods, the degradation of ma- terial stifiness due to the decrease of the first natural frequency, when the driving frequency is slightly lower than the first natural frequency of the undegradated structure. By considering the vibration of the uni- form slender cantilever beam as an oscillating system with degrading hysteretic behavior the following equation is considered subjected to the boundary conditions To approximate the solution of the this problem, we use the method of Newton interpolating series (see [6]) and the Taylor series method (see [8]).


Author(s):  
Fadi M. Alsaleem ◽  
Mohammad I. Younis ◽  
Hassen M. Ouakad

We present modeling, analysis, and experimental investigation for dynamic instabilities and bifurcations in electrostatically actuated resonators. These instabilities are induced by exciting a microstructure with a nonlinear forcing composed of a DC parallel-plate electrostatic load superimposed to an AC harmonic load. Because of the dominant effect of the electrostatic nonlinearity, several resonances and nonlinear phenomena are induced. Examples of these are the excitation of secondary-resonances, superharmonic and subharmonic, at half and twice the natural frequency of the microstructure. Also, local bifurcations, such as saddle-node and pitchfork, and global bifurcations, such as the escape phenomenon and the homoclinic tangling may occur. These lead to undesirable jumps, hysteresis, and dynamic pull-in instabilities in MEMS devices and structures. The present work represents an attempt to explore these topics in more depth. The first part of this paper is focused on analyzing and studying the nonlinear dynamics of a capacitive device both theoretically and experimentally with a focus on the case of primary-resonance excitation (near the fundamental natural frequency of the structure). The device is made up of two cantilever beams with a proof mass attached to their tips. A nonlinear spring-mass-damper model is utilized, which accounts for squeeze-film damping. Long-time integration for the equation of motion is used to compare with the obtained experimental data. Then, global dynamic analysis is conducted using a finite difference method (primary resonance) and shooting method (subharmonic resonance) combined with the Floquet theory to capture periodic orbits and analyze their stability. The domains of attraction (basins of attraction) for selected data are calculated numerically. Experimental data revealing primary and sub-harmonic resonances, dynamic pull-in, and the escape-from-a-potential-well phenomenon are shown and compared with the theoretical results.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 898
Author(s):  
Michaela Bobková ◽  
Lukáš Pospíšil

We are interested in a contact problem for a thin fixed beam with an internal point obstacle with possible rotation and shift depending on a given swivel and sliding friction. This problem belongs to the most basic practical problems in, for instance, the contact mechanics in the sustainable building construction design. The analysis and the practical solution plays a crucial role in the process and cannot be ignored. In this paper, we consider the classical Euler–Bernoulli beam model, which we formulate, analyze, and numerically solve. The objective function of the corresponding optimization problem for finding the coefficients in the finite element basis combines a quadratic function and an additional non-differentiable part with absolute values representing the influence of considered friction. We present two basic algorithms for the solution: the regularized primal solution, where the non-differentiable part is approximated, and the dual formulation. We discuss the disadvantages of the methods on the solution of the academic benchmarks.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
J. Machalová ◽  
H. Netuka

Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.


Author(s):  
Xin Shan ◽  
Onur Bilgen

Abstract This paper presents the mechanical design and modeling of an active segment of a bioinspired piezocomposite aquatic pump. The design and analysis is based on an electromechanical Euler-Bernoulli beam model. The self-contained propulsion/pumping system is composed of a series of piezo-active soft cymbal-like segments that are connected by passive soft films. By applying coordinated excitations for expansion and contraction to different active segments, the design creates a traveling wave along the pump axis, which in return propels the fluid to generate a unidirectional thrust force. In the model, the insulation and mechanical properties of the waterproofing sealant layer are considered. Using the proposed electromechanical model, a parametric analysis is conducted to understand the effectiveness of the cymbal-like piezocomposite active segment. Two performance metrics are considered, including the area change of the enclosed by the cymbal-like segment, and the work done by the actuators. The optimal structural parameters of the piezocomposite pump are decided by these performance metrics.


Sign in / Sign up

Export Citation Format

Share Document