Exergoeconomic Analysis of an Advanced Zero Emission Plant

Author(s):  
F. Petrakopoulou ◽  
G. Tsatsaronis ◽  
T. Morosuk

Exergy-based methods are reliable means for the comparison and the evaluation of the operation of energy conversion systems. In this paper, the Advanced Zero Emission Plant, a plant that performs combustion in a nitrogen-free environment (oxy-fuel combustion) is presented, compared to a reference plant (without CO2 capture) and evaluated based on an exergoeconomic analysis. A variation of the oxy-fuel plant with a lower CO2 capture percentage (85%) is also presented in order to (1) evaluate the influence of CO2 capture on a plant’s overall performance and cost, and (2) enable the comparison with other conventional methods, such as post-combustion with chemical absorption that also performs CO2 capture with lower effectiveness. When compared to the reference case, the oxy-fuel plants achieve a minimal decrease in exergetic efficiency, essentially due to their more efficient combustion processes. Cost calculations reveal that the membrane used for the oxygen production in the oxy-fuel plants is their main expenditure. Nonetheless, the cost of electricity and the cost of CO2 avoided for these plants are calculated to be competitive with chemical absorption.

Author(s):  
Fontina Petrakopoulou ◽  
George Tsatsaronis ◽  
Tatiana Morosuk

In this paper, an advanced zero emission plant using oxy-fuel combustion is presented and compared with a reference plant (a) without CO2 capture and (b) with CO2 capture via chemical absorption. A variation of the oxy-fuel plant with a lower CO2 capture percentage (85%) is also presented, in order to (1) evaluate the influence of CO2 capture on the overall performance and cost of the plant and (2) enable comparison at the plant-level with the conventional method for CO2 capture: chemical absorption with monoethanolamine. Selected results of an advanced exergetic analysis are also briefly presented to provide an overview of further development of evaluation methodologies, as well as deeper insight into power plant design. When compared with the reference case, the oxy-fuel plants with 100% and 85% CO2 captures suffer only a relatively small decrease in efficiency, essentially due to their more efficient combustion processes that make up for the additional thermodynamic inefficiencies and energy requirements. Investment cost estimates show that the membrane used for the oxygen production in the oxy-fuel plants is the most expensive component. If less expensive materials can be used for the mixed conducting membrane reactor used in the plants, the overall plant expenditures can be significantly reduced. Using the results of the exergoeconomic analysis, the components with the higher influence on the overall plant are revealed and possible changes to improve the plants are suggested. Design modifications that can lead to further decreases in the costs of electricity and CO2 capture, are discussed in detail. Overall, the calculated cost of electricity and the cost of avoided CO2 from the oxy-fuel plants are calculated to be competitive with those of chemical absorption.


Author(s):  
F. Petrakopoulou ◽  
G. Tsatsaronis ◽  
T. Morosuk

Although conventional exergy-based analyses uncover a path towards plant improvement, they suffer from some limitations, which are addressed by advanced exergy-based analyses. Advanced exergy-based methods identify interdependencies among plant components, and reveal the potential of improvement both at the component and plant level. Thus, data obtained from these methods pinpoint strengths and weaknesses of energy conversion systems and are of great importance when complex plants with a large number of interconnected components are considered. In this paper an advanced exergoeconomic analysis is applied to an advanced zero emission plant (AZEP). The most important components, in terms of the total avoidable costs, are the components constituting the main gas turbine system, while of particular importance are also the components of the mixed conducting membrane reactor incorporated in the plant. It has been found that for the most influential components of the plant, the largest part of investment cost rates and costs of exergy destruction are unavoidable. Additionally, for both the investment cost and the cost of exergy destruction, the interactions among the components are in most cases of lower importance, since for the majority of the components, the endogenous parts of the costs (related to the operation of the components themselves) are significantly larger than the corresponding exogenous parts (related to the operation of the remaining components). Nevertheless, strong interactions have been found among the components of the mixed conducting membrane reactor.


Author(s):  
F. Petrakopoulou ◽  
G. Tsatsaronis ◽  
T. Morosuk ◽  
A. Carassai

Exergy-based analyses are important tools for studying and evaluating energy conversion systems. While conventional exergy-based analyses provide us with important information, further insight on the potential for improving plant components and the overall plant as well as on the interactions among components of energy conversion systems are significant when optimizing a system. This necessity led to the development of advanced exergy-based analyses, in which the exergy destruction, as well as the associated costs and environmental impact are split into avoidable/unavoidable and endogenous/exogenous parts. Based on the avoidable parts of the exergy destruction, costs and environmental impact, the potential for improvement and related strategies are revealed. This paper presents the application of an advanced exergoeconomic analysis to a combined cycle power plant. The largest parts of the unavoidable cost rates are calculated for the components constituting the gas turbine system and the low-pressure steam turbine. The combustion chamber has the second highest avoidable investment cost, while it has the highest avoidable cost of exergy destruction. In general, most of the investment costs are unavoidable, with the exception of some heat exchangers of the plant. Similarly, most of the cost of exergy destruction is unavoidable with the exception of the expander in the gas turbine system and the high-pressure and intermediate-pressure steam turbines. In general, the advanced exergoeconomic analysis reveals high endogenous values, which suggest improvement of the total plant by improving the design of the components primarily in isolation, and lower exogenous values, which suggest that the component interactions are of lower significance for this plant.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1129 ◽  
Author(s):  
Sara Restrepo-Valencia ◽  
Arnaldo Walter

For significantly reducing greenhouse gas emissions, those from electricity generation should be negative by the end of the century. In this sense, bio-energy with carbon capture and storage (BECCS) technology in sugarcane mills could be crucial. This paper presents a technical and economic assessment of BECCS systems in a typical Brazilian sugarcane mill, considering the adoption of advanced—although commercial—steam cogeneration systems. The technical results are based on computational simulations, considering CO2 capture both from fermentation (released during ethanol production) and due to biomass combustion. The post combustion capture technology based on amine was considered integrated to the mill and to the cogeneration system. A range of energy requirements and costs were taken from the literature, and different milling capacities and capturing rates were considered. Results show that CO2 capture from both flows is technically feasible. Capturing CO2 from fermentation is the alternative that should be prioritized as energy requirements for capturing from combustion are meaningful, with high impacts on surplus electricity. In the reference case, the cost of avoided CO2 emissions was estimated at 62 €/t CO2, and this can be reduced to 59 €/t CO2 in case of more efficient technologies, or even to 48 €/t CO2 in case of larger plants.


Author(s):  
F. Petrakopoulou ◽  
G. Tsatsaronis ◽  
T. Morosuk

Exergy-based analyses are useful means for the evaluation and improvement of energy conversion systems. A life cycle assessment (LCA) is coupled with an exergetic analysis in an exergo-environmental analysis. An advanced exergo-environmental analysis quantifies the environmental impacts estimated in the LCA into avoidable/unavoidable parts and into endogenous/exogenous parts, depending on their source. This analysis reveals the potential for improvement of plant components/processes and the component interactions within a system. In this paper, the environmental performance of an advanced zero emission plant (AZEP) with CO2 capture is evaluated based on an advanced exergoenvironmental analysis. The plant uses oxy-fuel technology and incorporates an oxygen-separating mixed conducting membrane (MCM). To evaluate the operation of the system, a similar plant (reference plant) without CO2 capture is used. It has been found that the improvement potential of the AZEP concept is restricted by the relatively low avoidable environmental impact of exergy destruction of several plant components. Moreover, the endogenous environmental impacts are for the majority of the components significant, while the exogenous values are, generally, kept at low levels. Nevertheless, a closer inspection reveals that there are strong interactions among the components of the MCM reactor and the components constituting the CO2 compression unit. Such results are valuable, when the improvement of the environmental performance of the plant is targeted and they can only be obtained through advanced exergy-based methods.


2013 ◽  
Vol 52 (47) ◽  
pp. 16887-16901 ◽  
Author(s):  
Anggit Raksajati ◽  
Minh T. Ho ◽  
Dianne E. Wiley

2020 ◽  
pp. 99-111
Author(s):  
Vontas Alfenny Nahan ◽  
Audrius Bagdanavicius ◽  
Andrew McMullan

In this study a new multi-generation system which generates power (electricity), thermal energy (heating and cooling) and ash for agricultural needs has been developed and analysed. The system consists of a Biomass Integrated Gasification Combined Cycle (BIGCC) and an absorption chiller system. The system generates about 3.4 MW electricity, 4.9 MW of heat, 88 kW of cooling and 90 kg/h of ash. The multi-generation system has been modelled using Cycle Tempo and EES. Energy, exergy and exergoeconomic analysis of this system had been conducted and exergy costs have been calculated. The exergoeconomic study shows that gasifier, combustor, and Heat Recovery Steam Generator are the main components where the total cost rates are the highest. Exergoeconomic variables such as relative cost difference (r) and exergoeconomic factor (f) have also been calculated. Exergoeconomic factor of evaporator, combustor and condenser are 1.3%, 0.7% and 0.9%, respectively, which is considered very low, indicates that the capital cost rates are much lower than the exergy destruction cost rates. It implies that the improvement of these components could be achieved by increasing the capital investment. The exergy cost of electricity produced in the gas turbine and steam turbine is 0.1050 £/kWh and 0.1627 £/kWh, respectively. The cost of ash is 0.0031 £/kg. In some Asian countries, such as Indonesia, ash could be used as fertilizer for agriculture. Heat exergy cost is 0.0619 £/kWh for gasifier and 0.3972 £/kWh for condenser in the BIGCC system. In the AC system, the exergy cost of the heat in the condenser and absorber is about 0.2956 £/kWh and 0.5636 £/kWh, respectively. The exergy cost of cooling in the AC system is 0.4706 £/kWh. This study shows that exergoeconomic analysis is powerful tool for assessing the costs of products.


2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.


Energy Policy ◽  
2009 ◽  
Vol 37 (2) ◽  
pp. 669-679 ◽  
Author(s):  
Andreas Poullikkas ◽  
Ioannis Hadjipaschalis ◽  
Costas Christou

Sign in / Sign up

Export Citation Format

Share Document