Simulation of Combustion and Thermal-Flow Inside a Petroleum Coke Rotary Calcining Kiln: Part 2—Analysis of Effects of Tertiary Airflow and Rotation

Author(s):  
Zexuan Zhang ◽  
Ting Wang

A computational model is established to simulate the combustion and thermal-flow behavior inside a petcoke rotary calcining kiln. The results show that peak temperature is located at the tertiary air zone and a cold region that exists between the natural gas combustion zone and the tertiary air zone causes the coke bed to lose heat to the gas stream. The cold tertiary air injections reduce the gas temperature inside the kiln, so preheating the tertiary air using extracted gas or other waste energy is essential to saving energy. The devolatilization rate and location have a pronounced effect on the simulated temperature distribution. As the calcining kiln rotates, the tertiary air injection nozzles will move relative to the coke bed and exert cyclic air-bed interactions. At zero angular position, the air injection nozzles are diametrically located away from the bed, so the interactions between the tertiary air jets and coke bed are minimal. As the kiln rotates to a 180-degree position, the stem of the air injection nozzles are actually buried inside the coke bed with the nozzles protruding outward from the bed. At this position, the tertiary air jets will provide a fresh layer of air just above the coke bed, and the interaction between the air flow and coke bed becomes strong. The 45° rotational angle case shows a better calcination with a 100 K higher bed surface temperature at the discharge end compared to the rest of rotational angles. Without including the coke fines combustion and the coke bed, the lumped gas temperature for the rotational cases shows a peak temperature of 1,400 K at Z/D = 2, which is due to natural gas combustion; the lowest temperature is around 1,075 K at two locations, Z/D = 4 and 8, respectively. The exhaust gas temperature is approximately 1,100K.

Author(s):  
Zexuan Zhang ◽  
Ting Wang

A computational model is established to simulate the combustion and thermal-flow behavior inside a petcoke rotary calcining kiln. The results show that peak temperature is located at the tertiary air zone and a cold region that exists between the natural gas combustion zone and the tertiary air zone causes the coke bed to lose heat to the gas stream. The cold tertiary air injections reduce the gas temperature inside the kiln, so preheating the tertiary air using extracted gas or other waste energy is essential to saving energy. The devolatilization rate and location have a pronounced effect on the simulated temperature distribution. As the calcining kiln rotates, the tertiary air injection nozzles will move relative to the coke bed and exert cyclic air-bed interactions. At zero angular position, the air injection nozzles are diametrically located away from the bed so the interactions between the tertiary air jets and the coke bed are minimal. As the kiln rotates to a 180 deg position, the stem of the air injection nozzles are actually buried inside the coke bed with the nozzles protruding outward from the bed. At this position, the tertiary air jets will provide a fresh layer of air just above the coke bed, and the interaction between the air flow and the coke bed becomes strong. The 45 deg rotational angle case shows a better calcination with a 100 K higher bed surface temperature at the discharge end compared with the rest of rotational angles. Without including the coke fines combustion and the coke bed, the lumped gas temperature for the rotational cases shows a peak temperature of 1400 K at Z/D=2, which is due to natural gas combustion; the lowest temperature is around 1075 K at two locations, Z/D=4 and 8. The exhaust gas temperature is approximately 1100 K. The insight gained from this study will be used to design innovative means to reduce natural gas consumption.


2013 ◽  
Vol 393 ◽  
pp. 741-746 ◽  
Author(s):  
Hasril Hasini ◽  
Norshah Hafeez Shuaib ◽  
Wan Ahmad Fahmi Wan Abdullah

This paper presents CFD analysis of the effect of syngas combustion in a full scale gas turbine combustor with specific emphasis given to the flame and flue gas temperature distribution. A base case solution was first established using conventional natural gas combustion. Actual operating boundary conditions such as swirl, diffusion and fuel mass flow were imposed on the model. The simulation result is validated with the flame temperature of typical natural gas combustion. Result from flow and combustion calculation shows reasonable trend of the swirl mixing effect. The maximum flame temperature was found to be the highest for syngas with the highest H2/CO ratio. However, the flue gas temperature was found to be approximately identical for all cases. The prediction of temperature distribution in the combustor would enable further estimation of pollutant species such as CO2and NOxin complex regions within the combustor.


2019 ◽  
Vol 6 (2) ◽  
pp. 56-63
Author(s):  
L. D. Pylypiv ◽  
І. І. Maslanych

There are investigated the influence of operating pressures in the gas supply system on the level of such energy indicators as efficiency, gas flow and gas overrun by gas equipment in residential buildings. There is established a relationship between the values of operating pressures in the gas supply system and the gas consumption level of household appliances. The causes of insufficient pressure in the gas networks of settlements are analyzed in the article. There is also developed an algorithm for calculating the change in the efficiency of gas appliances depending on the operational parameters of the gas network. It has been found that the most efficient operation of gas appliances is observed at an overpressure at the inlet of gas appliances of about 1200 Pa.To ensure the required quality of natural gas combustion among consumers and minimize gas consumption there are justified the following measures in the article: coordinating a domestic regulatory framework for assessing the quality of natural gas with international norms and standards; improving the preparation of gas coming from local wells before supplying it to gas distribution networks; auditing low pressure gas pipelines and reconstructing areas affected by corrosion; ensuring standard gas pressure in the network for the normal operation of domestic gas appliances; stating quality indicators of natural gas combustion by gas sales organizations.


2002 ◽  
Vol 125 (1) ◽  
pp. 40-45 ◽  
Author(s):  
K. P. Vanoverberghe ◽  
E. V. Van den Bulck ◽  
M. J. Tummers ◽  
W. A. Hu¨bner

Five different flame states are identified in a compact combustion chamber that is fired by a 30 kW swirl-stabilized partially premixed natural gas burner working at atmospheric pressure. These flame states include a nozzle-attached tulip shaped flame, a nonattached torroidal-ring shaped flame (SSF) suitable for very low NOx emission in a gas turbine combustor and a Coanda flame (CSF) that clings to the bottom wall of the combustion chamber. Flame state transition is generated by changing the swirl number and by premixing the combustion air with 70% of the natural gas flow. The flame state transition pathways reveal strong hysteresis and bifurcation phenomena. The paper also presents major species concentrations, temperature and velocity profiles of the lifted flame state and the Coanda flame and discusses the mechanisms of flame transition and stabilization.


MTZ worldwide ◽  
2015 ◽  
Vol 76 (10) ◽  
pp. 30-35
Author(s):  
Bertold Hüchtebrock ◽  
José Geiger ◽  
Avnish Dhongde ◽  
Harsh Sankhla

2012 ◽  
Vol 26 (4) ◽  
pp. 2058-2067 ◽  
Author(s):  
Abolhasan Hashemi Sohi ◽  
Ali Eslami ◽  
Amir Sheikhi ◽  
Rahmat Sotudeh-Gharebagh

Sign in / Sign up

Export Citation Format

Share Document