PID-Based Thermal Control in Heat Conduction Micro-Calorimeters

Author(s):  
Arturo Pacheco-Vega ◽  
Luis Enrique Vilchiz-Bravo ◽  
Brent E. Handy

Strategies based on the principle of heat flow and temperature control were implemented, and experimentally tested, to increase the sensitivity of a Tian-Calvet microcalorimeter for measuring heats of adsorption. Here, both heat-flow and temperature control schemes were explored to diminish heater-induced thermal variations within the heat sink element hence obtaining less noise in the baseline signal. PID controllers were implemented within a closed-loop system to perform the control actions in an calorimetric setup. The experimental results demonstrate that the heat flow control strategy provided a better baseline stability when compared to the temperature control. A modified control strategy is then suggested to maintain a stable core temperature and signal noise level in the system.

2021 ◽  
Vol 2070 (1) ◽  
pp. 012102
Author(s):  
V Venkatachalam ◽  
M Ramasubramanian ◽  
M Thirumarimurugan ◽  
D Prabhakaran

Abstract This paper presents an Investigation on the stability of network controlled temperature control system having Time-Invariant feedback delays, by utilizing a direct method for TDS stability analysis. A PI controller based stability analysis for temperature control system with Time invariant feedback loop delay has been constructed in this paper. The stability problem has been formulated based on the transfer function model of the closed loop system with various time delays. For different subsets of the controller parameters, based on the stability criterion’s maximal permissible bound of the network link delay that the closed loop system can accommodate without losing the stability has been computed. The effectiveness of the obtained result was validated on a benchmark temperature control system using MATLAB simulation software.


2018 ◽  
Vol 8 (9) ◽  
pp. 1463 ◽  
Author(s):  
Xianghua Ma ◽  
Hanqiu Bao

The payload swing of an overhead crane needs to be controlled properly to improve efficiency and avoid accidents. However, the swing angle is usually very difficult to control to zero degrees or for it to even remain within an acceptable range because the overhead crane is a complex nonlinear underactuated system, especially when the actual working environment is accompanied by strong disturbances and great uncertainty. To resolve this, a real-time anti-swing closed-loop control strategy is proposed that considers external disturbances. The swing angle is measured in time and it functions with the load displacement as feedback inputs of the closed-loop system. The nonlinear model of the crane is simplified by a linear system with virtual disturbances, which are estimated by the equivalent input disturbance (EID) method. Both simulation and experimental results for a 2-D overhead crane system are investigated to illustrate the validity of the proposed method.


2019 ◽  
Vol 20 (1) ◽  
pp. 3-15 ◽  
Author(s):  
I. B. Furtat ◽  
P. A. Gushchin ◽  
A. A. Peregudin

The output feedback algorithm for dynamic plants with compensation of parametric uncertainty, external disturbances and measurement noises is synthesized. The plants are described by a nonlinear system of differential equations with vector input and output signals. Unlike most existing control schemes in this paper the dimensions of the measurement interference and the output signal are equal, the sources of the signals of disturbances and disturbances are different, parametric and external disturbances can be present in any equation of the plant model. For simultaneous compensation of disturbances and measurement noises it is proposed to consider two channels. On the first channel a part of the measurement noises will be estimated which will allow partial recovery the information about the plant noisy output. On the second channel the disturbances will be compensated. Thus, at least two independent measurement channels are required for simultaneous compensation of disturbances and measurement noises. Sufficient conditions for calculating the parameters of the algorithm in the form of solvability of the linear matrix inequality are obtained. It is shown that the equation of a closed-loop system obtained on the basis of the proposed algorithm depends on the disturbances and the smallest component of the measurement noise. However, if the smallest component cannot be identified a priory, the results of the transients depend on the component of the noise that will be selected in the synthesis of the control system. Thus, unlike most existing control schemes, where the equation of a closed-loop system depends on disturbance and noise, the resulting algorithm provides better transients, because they do not depend on the entire noise vector, but only on its smallest (one) component. The simulations for a third-order nonlinear plant and the synchronization of an electrical generator connected to the power grid are presented. Numerical examples illustrate the effectiveness of the proposed scheme and the robustness with respect to random components in the noises and disturbances.


Author(s):  
Wei Yu ◽  
Rui Wang ◽  
Xuhui Bu ◽  
Jiaqi Liang

In this paper, the [Formula: see text] control problem for a class of two-dimensional (2-D) linear discrete-time systems with fading measurements is investigated, where the 2-D systems are described by a Roesser model. The Rice fading model is applied to describe the fading phenomenon and the coefficients of the model satisfy the independent identical Gaussian distributions. The main objective of this paper is to design a controller such that both the 2-D closed-loop system is exponentially mean-square stable and the prescribed [Formula: see text] performance is guaranteed under the condition of applying the attenuation signals. By utilizing the Lyapunov stability theory and the linear matrix inequalities (LMIs) techniques, sufficient conditions are conducted to guarantee the desired tracking performance. Based on such conditions, the gain matrix of the proposed controller is obtained. Finally, the effectiveness of the proposed control schemes is illustrated with a numerical example and a Darboux equation example.


Author(s):  
James A. Mynderse ◽  
George T. C. Chiu

A methodology for designing a low-computation, high-bandwidth strategy for closed-loop control of a hysteretic system without a priori knowledge of the desired trajectory is presented. The resulting two degree-of-freedom hysteresis control strategy is applied to a dynamic mirror with antagonistic piezoelectric stack actuation. Hysteresis compensator is performed by a finite state machine switching polynomials for hysteresis inversion based on the input signal slope. Residual error after hysteresis compensation is corrected by an LQR feedback controller. Experimental results demonstrate effectiveness of the hysteresis compensator and closed-loop system under the proposed hysteresis control strategy. For the triangular input signal tested, the closed-loop system achieves a 91.5% reduction in hysteresis uncertainty with 60 kHz sample rate.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Cai-Yun Liu ◽  
Zong-Yao Sun ◽  
Qing-Hua Meng ◽  
Chih-Chiang Chen ◽  
Bin Cai ◽  
...  

This paper focuses on the problem of global output feedback stabilization for a class of nonlinear cascade systems with time-varying output function. By using double-domination approach, an output feedback controller is developed to guarantee the global asymptotic stability of closed-loop system. The novel control strategy successfully constructs a unified Lyapunov function, which is suitable for both upper-triangular and lower-triangular systems. Finally, two numerical examples are provided to illustrate the effectiveness of a control strategy.


2021 ◽  
Vol 54 (6) ◽  
pp. 835-845
Author(s):  
Nadia Bounouara ◽  
Mouna Ghanai ◽  
Kheireddine Chafaa

In this paper, the Particle Swarm Optimization algorithm (PSO) is combined with Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) to design more efficient PD and PID controllers for robotic manipulators. PSO is used to optimize the controller parameters Kp (proportional gain), Ki (integral gain) and Kd (derivative gain) to achieve better performances. The proposed algorithm is performed in two steps: (1) First, PD and PID parameters are offline optimized by the PSO algorithm. (2) Second, the obtained optimal parameters are fed in the online control loop. Stability of the proposed scheme is established using Lyapunov stability theorem, where we guarantee the global stability of the resulting closed-loop system, in the sense that all signals involved are uniformly bounded. Computer simulations of a two-link robotic manipulator have been performed to study the efficiency of the proposed method. Simulations and comparisons with genetic algorithms show that the results are very encouraging and achieve good performances.


2021 ◽  
Author(s):  
Yan Feng

The thesis presents a novel Internet-based controller designed with the remote controller computer synchronizing its clock with the local computer. An observer-based state feedback control strategy is proposed to compensate the Internet delay and improve the system performance. Asymptotic stability of the closed-loop system is achieved without the assumption of reliable transmission from the controller computer to the local computer, which reduces the requirement for high performance Internet access. Computer simulations are conducted to evaluate the proposed control strategy, and the results have confirmed its effectiveness. The experimental result have demonstrated the supreme performance of the proposed control strategy.


2005 ◽  
Vol 2005 (2) ◽  
pp. 195-214 ◽  
Author(s):  
Mohamed Zribi ◽  
Muthana T. Alrifai

This paper investigates the control problem of variable reluctance motors (VRMs). VRMs are highly nonlinear motors; a model that takes magnetic saturation into account is adopted in this work. Two robust control schemes are developed for the speed control of a variable reluctance motor. The first control scheme guarantees the uniform ultimate boundedness of the closed loop system. The second control scheme guarantees the exponential stability of the closed loop system. Simulation results of the proposed controllers are presented to illustrate the theoretical developments. The simulations indicate that the proposed controllers work well, and they are robust to changes in the parameters of the motor and to changes in the load.


Sign in / Sign up

Export Citation Format

Share Document